Absolute dimensionality of quantum ensembles
- URL: http://arxiv.org/abs/2409.01752v1
- Date: Tue, 3 Sep 2024 09:54:15 GMT
- Title: Absolute dimensionality of quantum ensembles
- Authors: Alexander Bernal, Gabriele Cobucci, Martin J. Renner, Armin Tavakoli,
- Abstract summary: The dimension of a quantum state is traditionally seen as the number of superposed distinguishable states in a given basis.
We propose an absolute, i.e.basis-independent, notion of dimensionality for ensembles of quantum states.
- Score: 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dimension of a quantum state is traditionally seen as the number of superposed distinguishable states in a given basis. We propose an absolute, i.e.~basis-independent, notion of dimensionality for ensembles of quantum states. It is based on whether a quantum ensemble can be simulated with states confined to arbitrary lower-dimensional subspaces and classical postprocessing. In order to determine the absolute dimension of quantum ensembles, we develop both analytical witness criteria and a semidefinite programming criterion based on the ensemble's information capacity. Furthermore, we construct explicit simulation models for arbitrary ensembles of pure quantum states subject to white noise, and in natural cases we prove their optimality. Also, efficient numerical methods are provided for simulating generic ensembles. Finally, we discuss the role of absolute dimensionality in high-dimensional quantum information processing.
Related papers
- Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Determining the ability for universal quantum computing: Testing
controllability via dimensional expressivity [39.58317527488534]
Controllability tests can be used in the design of quantum devices to reduce the number of external controls.
We devise a hybrid quantum-classical algorithm based on a parametrized quantum circuit.
arXiv Detail & Related papers (2023-08-01T15:33:41Z) - Probabilistic Unitary Formulation of Open Quantum System Dynamics [3.8326963933937885]
We show that for any continuously evolving open quantum system, its dynamics can be described by a time-dependent Hamiltonian and probabilistic combinations of up to $d-1$.
The formalism provides a scheme to control a quantum state to evolve along designed quantum trajectories, and can be particularly useful in quantum computing and quantum simulation scenes.
arXiv Detail & Related papers (2023-07-11T20:07:03Z) - Variational Approach to Quantum State Tomography based on Maximal
Entropy Formalism [3.6344381605841187]
We employ the maximal entropy formalism to construct the least biased mixed quantum state that is consistent with the given set of expectation values.
We employ a parameterized quantum circuit and a hybrid quantum-classical variational algorithm to obtain such a target state making our recipe easily implementable on a near-term quantum device.
arXiv Detail & Related papers (2022-06-06T01:16:22Z) - Simulability of high-dimensional quantum measurements [0.0]
We demand that the statistics obtained from $mathcalM$ and an arbitrary quantum state $rho$ are recovered exactly by first compressing $rho$ into a lower dimensional space.
A full quantum compression is possible, if and only if the set $mathcalM$ is jointly measurable.
We analytically construct optimal simulation models for all projective measurements subjected to white noise or losses.
arXiv Detail & Related papers (2022-02-25T21:22:29Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Exact emergent quantum state designs from quantum chaotic dynamics [0.0]
We consider an ensemble of pure states supported on a small subsystem, generated from projective measurements of the remainder of the system in a local basis.
We rigorously show that the ensemble, derived for a class of quantum chaotic systems undergoing quench dynamics, approaches a universal form completely independent of system details.
Our work establishes bridges between quantum many-body physics, quantum information and random matrix theory, by showing that pseudo-random states can arise from isolated quantum dynamics.
arXiv Detail & Related papers (2021-09-15T18:00:10Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Characterizing quantum ensemble using geometric measure of quantum
coherence [1.5630592429258865]
We propose a quantumness quantifier for the quantum ensemble.
It satisfies the necessary axioms of a bonafide measure of quantumness.
We compute the quantumness of a few well-known ensembles.
arXiv Detail & Related papers (2021-04-19T07:37:27Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.