論文の概要: BVI-UGC: A Video Quality Database for User-Generated Content Transcoding
- arxiv url: http://arxiv.org/abs/2408.07171v1
- Date: Tue, 13 Aug 2024 19:30:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 14:45:31.877534
- Title: BVI-UGC: A Video Quality Database for User-Generated Content Transcoding
- Title(参考訳): BVI-UGC: ユーザ生成コンテンツ変換のためのビデオ品質データベース
- Authors: Zihao Qi, Chen Feng, Fan Zhang, Xiaozhong Xu, Shan Liu, David Bull,
- Abstract要約: ユーザ生成コンテンツ(UGC)のための新しいビデオ品質データベースBVI-UGCを提案する。
BVI-UGCには60(非プリスティン)の参照ビデオと1,080のテストシーケンスが含まれている。
私たちは、10のフル参照と11のノン参照品質メトリクスのパフォーマンスをベンチマークしました。
- 参考スコア(独自算出の注目度): 25.371693436870906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, user-generated content (UGC) has become one of the major video types consumed via streaming networks. Numerous research contributions have focused on assessing its visual quality through subjective tests and objective modeling. In most cases, objective assessments are based on a no-reference scenario, where the corresponding reference content is assumed not to be available. However, full-reference video quality assessment is also important for UGC in the delivery pipeline, particularly associated with the video transcoding process. In this context, we present a new UGC video quality database, BVI-UGC, for user-generated content transcoding, which contains 60 (non-pristine) reference videos and 1,080 test sequences. In this work, we simulated the creation of non-pristine reference sequences (with a wide range of compression distortions), typical of content uploaded to UGC platforms for transcoding. A comprehensive crowdsourced subjective study was then conducted involving more than 3,500 human participants. Based on this collected subjective data, we benchmarked the performance of 10 full-reference and 11 no-reference quality metrics. Our results demonstrate the poor performance (SROCC values are lower than 0.6) of these metrics in predicting the perceptual quality of UGC in two different scenarios (with or without a reference).
- Abstract(参考訳): 近年、ユーザ生成コンテンツ(UGC)は、ストリーミングネットワークで消費される主要なビデオタイプの一つとなっている。
多くの研究が主観的テストと客観的モデリングを通じて視覚的品質を評価することに重点を置いている。
ほとんどの場合、客観的アセスメントは、対応する参照コンテンツが利用できないと仮定されるノン参照シナリオに基づいている。
しかしながら、フルレファレンスビデオ品質評価は、特にビデオトランスコーディングプロセスに関連するデリバリパイプラインにおけるUGCにとっても重要である。
この文脈では、ユーザ生成コンテンツ変換のための新しいUGCビデオ品質データベースであるBVI-UGCを紹介し、60(非プライスティン)参照ビデオと1,080のテストシーケンスを含む。
本研究では,UGCプラットフォームにアップロードされた典型的コンテンツである非プリスチン参照シーケンス(広範囲の圧縮歪みを伴う)の作成をシミュレートした。
総合的なクラウドソーシングによる主観的研究が行われ、3500人以上の被験者が参加した。
この収集した主観的データに基づいて、10の完全参照と11の非参照品質メトリクスのパフォーマンスをベンチマークした。
その結果,2つのシナリオ(参照の有無に関わらず)において,UGCの知覚的品質を予測する上で,これらの指標の低性能(SROCC値が0.6以下)が示された。
関連論文リスト
- AIM 2024 Challenge on Compressed Video Quality Assessment: Methods and Results [120.95863275142727]
本稿では,ECCV 2024における画像操作の進歩(AIM)ワークショップと共同で開催されている圧縮映像品質評価の課題について述べる。
この課題は、様々な圧縮標準の14コーデックで符号化された459本の動画の多様なデータセット上で、VQA法の性能を評価することであった。
論文 参考訳(メタデータ) (2024-08-21T20:32:45Z) - Benchmarking AIGC Video Quality Assessment: A Dataset and Unified Model [54.69882562863726]
主観的および客観的品質評価の観点からAIGC-VQA問題を体系的に検討する。
我々は,空間的品質,時間的品質,テキスト・ツー・ビデオアライメントの3次元から,AIGCビデオの知覚品質を評価する。
本稿では,AIGCビデオの品質を包括的かつ正確に評価するUnify Generated Video Quality Assessment (UGVQ)モデルを提案する。
論文 参考訳(メタデータ) (2024-07-31T07:54:26Z) - ReLaX-VQA: Residual Fragment and Layer Stack Extraction for Enhancing Video Quality Assessment [35.00766551093652]
本稿では, NR-VQA(No-Reference Video Quality Assessment)モデルであるReLaX-VQAを提案する。
ReLaX-VQAは、残留フレームと光学フローの断片と、サンプルフレームの空間的特徴の異なる表現を用いて、動きと空間的知覚を高める。
我々は、NR-VQAのさらなる研究と応用を促進するために、コードをオープンソース化し、訓練されたモデルを公開します。
論文 参考訳(メタデータ) (2024-07-16T08:33:55Z) - KVQ: Kwai Video Quality Assessment for Short-form Videos [24.5291786508361]
我々は,600本のユーザアップロードショートビデオと3600本のプロセッシングビデオからなる,最初の大規模KVQ(Kleidoscope short Video database for Quality Assessment)を構築した。
そこで我々は,KSVQEというビデオ品質評価装置を提案する。これにより,品質決定セマンティクスを大規模視覚言語モデルの内容理解とともに識別することができる。
論文 参考訳(メタデータ) (2024-02-11T14:37:54Z) - MD-VQA: Multi-Dimensional Quality Assessment for UGC Live Videos [39.06800945430703]
我々は、第一種主観的Live VQAデータベースを構築し、効果的な評価ツールを開発する。
textbfMD-VQAは、Live VQAデータベースと既存の圧縮VQAデータベースの両方で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-03-27T06:17:10Z) - Audio-Visual Quality Assessment for User Generated Content: Database and
Method [61.970768267688086]
既存のVQA研究の多くは、ユーザのQoEが付随する音声信号にも依存していることを無視して、ビデオの視覚的歪みのみに焦点を当てている。
SJTU-UAVデータベースと呼ばれる最初のAVQAデータベースを構築する。
また、サポートベクタ回帰器(SVR)を介して、一般的なVQA手法とオーディオ機能を融合したAVQAモデルのファミリーを設計する。
実験の結果,VQAモデルは,音声信号の助けを借りて,より正確な品質評価を行うことができた。
論文 参考訳(メタデータ) (2023-03-04T11:49:42Z) - Video compression dataset and benchmark of learning-based video-quality
metrics [55.41644538483948]
本稿では,ビデオ圧縮の評価を行うビデオ品質指標の新しいベンチマークを提案する。
これは、異なる標準でエンコードされた約2,500のストリームからなる、新しいデータセットに基づいている。
クラウドソーシングによるペアワイズ比較により,主観的スコアを収集した。
論文 参考訳(メタデータ) (2022-11-22T09:22:28Z) - Disentangling Aesthetic and Technical Effects for Video Quality
Assessment of User Generated Content [54.31355080688127]
YouTube-VQA問題における人間の品質知覚のメカニズムはまだ解明されていない。
本稿では,2つの個別評価器を,各問題に特化して設計したビューで訓練する手法を提案する。
我々の盲目主観的研究は、DOVERの別個の評価器が、各不整合品質問題に対する人間の認識と効果的に一致できることを証明している。
論文 参考訳(メタデータ) (2022-11-09T13:55:50Z) - Deep Quality Assessment of Compressed Videos: A Subjective and Objective
Study [23.3509109592315]
ビデオ符号化プロセスでは、圧縮ビデオの知覚品質を、フル参照品質評価指標により評価する。
この問題を解決するために,非参照圧縮映像品質評価アルゴリズムの設計が重要である。
本研究では,大規模圧縮映像品質データベースを構築するために,半自動ラベリング方式を採用する。
論文 参考訳(メタデータ) (2022-05-07T10:50:06Z) - UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated
Content [59.13821614689478]
コンテンツの品質劣化は予測不能で、複雑で、しばしば開始されるため、Wild動画のブラインド品質の予測は非常に難しい。
ここでは、主要なVQAモデルの包括的評価を行うことにより、この問題の進展に寄与する。
先行するVQAモデルの特徴の上に特徴選択戦略を適用することで,先行するモデルが使用する統計的特徴のうち60点を抽出することができる。
我々の実験結果から,VIDEVALは,他の先行モデルよりも計算コストがかなり低く,最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2020-05-29T00:39:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。