Pan-cancer gene set discovery via scRNA-seq for optimal deep learning based downstream tasks
- URL: http://arxiv.org/abs/2408.07233v1
- Date: Tue, 13 Aug 2024 23:24:36 GMT
- Title: Pan-cancer gene set discovery via scRNA-seq for optimal deep learning based downstream tasks
- Authors: Jong Hyun Kim, Jongseong Jang,
- Abstract summary: We analyzed scRNA-seq data from 181 tumor biopsies across 13 cancer types.
High-dimensional weighted gene co-expression network analysis (hdWGCNA) was performed to identify relevant gene sets.
Oncogenes from OncoKB evaluated with deep learning models, including multilayer perceptrons (MLPs) and graph neural networks (GNNs)
- Score: 6.869831177092736
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The application of machine learning to transcriptomics data has led to significant advances in cancer research. However, the high dimensionality and complexity of RNA sequencing (RNA-seq) data pose significant challenges in pan-cancer studies. This study hypothesizes that gene sets derived from single-cell RNA sequencing (scRNA-seq) data will outperform those selected using bulk RNA-seq in pan-cancer downstream tasks. We analyzed scRNA-seq data from 181 tumor biopsies across 13 cancer types. High-dimensional weighted gene co-expression network analysis (hdWGCNA) was performed to identify relevant gene sets, which were further refined using XGBoost for feature selection. These gene sets were applied to downstream tasks using TCGA pan-cancer RNA-seq data and compared to six reference gene sets and oncogenes from OncoKB evaluated with deep learning models, including multilayer perceptrons (MLPs) and graph neural networks (GNNs). The XGBoost-refined hdWGCNA gene set demonstrated higher performance in most tasks, including tumor mutation burden assessment, microsatellite instability classification, mutation prediction, cancer subtyping, and grading. In particular, genes such as DPM1, BAD, and FKBP4 emerged as important pan-cancer biomarkers, with DPM1 consistently significant across tasks. This study presents a robust approach for feature selection in cancer genomics by integrating scRNA-seq data and advanced analysis techniques, offering a promising avenue for improving predictive accuracy in cancer research.
Related papers
- Learning to Discover Regulatory Elements for Gene Expression Prediction [59.470991831978516]
Seq2Exp is a Sequence to Expression network designed to discover and extract regulatory elements that drive target gene expression.
Our approach captures the causal relationship between epigenomic signals, DNA sequences and their associated regulatory elements.
arXiv Detail & Related papers (2025-02-19T03:25:49Z) - Graph Structure Learning for Tumor Microenvironment with Cell Type Annotation from non-spatial scRNA-seq data [6.432270457083369]
We present a novel graph neural network (GNN) model that enhances cell type prediction and cell interaction analysis.
The proposed scGSL model demonstrated robust performance, achieving an average accuracy of 84.83%, precision of 86.23%, recall of 81.51%, and an F1 score of 80.92% across all datasets.
arXiv Detail & Related papers (2025-02-04T18:28:25Z) - Precision Cancer Classification and Biomarker Identification from mRNA Gene Expression via Dimensionality Reduction and Explainable AI [0.9423257767158634]
This research presents a comprehensive pipeline designed to accurately identify 33 distinct cancer types and their corresponding gene sets.
It incorporates a combination of normalization and feature selection techniques to reduce dataset dimensionality effectively.
We leverage Explainable AI to elucidate the biological significance of the identified cancer-specific genes.
arXiv Detail & Related papers (2024-10-08T18:56:31Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - scBiGNN: Bilevel Graph Representation Learning for Cell Type
Classification from Single-cell RNA Sequencing Data [62.87454293046843]
Graph neural networks (GNNs) have been widely used for automatic cell type classification.
scBiGNN comprises two GNN modules to identify cell types.
scBiGNN outperforms a variety of existing methods for cell type classification from scRNA-seq data.
arXiv Detail & Related papers (2023-12-16T03:54:26Z) - Gene-MOE: A sparsely gated prognosis and classification framework
exploiting pan-cancer genomic information [13.57379781623848]
We introduce a novel sparsely gated RNA-seq analysis framework called Gene-MOE.
Gene-MOE exploits the potential of the MOE layers and the proposed mixture of attention expert layers to enhance the analysis accuracy.
It addresses overfitting challenges by integrating pan-cancer information from 33 distinct cancer types through pre-training.
arXiv Detail & Related papers (2023-11-29T07:09:25Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
We introduce scHyena, a foundation model designed to address these challenges and enhance the accuracy of scRNA-seq analysis in the brain.
scHyena is equipped with a linear adaptor layer, the positional encoding via gene-embedding, and a bidirectional Hyena operator.
This enables us to process full-length scRNA-seq data without losing any information from the raw data.
arXiv Detail & Related papers (2023-10-04T10:30:08Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
Cancer is the second major cause of death after cardiovascular diseases.
Gene expression can play a fundamental role in the early detection of cancer.
This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods.
arXiv Detail & Related papers (2023-01-28T15:03:03Z) - Transcriptome-wide prediction of prostate cancer gene expression from
histopathology images using co-expression based convolutional neural networks [0.8874479658912061]
We propose a new, computationally efficient approach for disease specific modelling of relationships between morphology and gene expression.
We conducted the first transcriptome-wide analysis in prostate cancer, using CNNs to predict bulk RNA-sequencing estimates.
arXiv Detail & Related papers (2021-04-19T13:50:25Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
We explore the potential to capture information contained in cancer genomic information using a novel topology-based approach.
We find that this technique has the potential to extract meaningful low-dimensional representations in cancer somatic genetic data.
arXiv Detail & Related papers (2020-11-22T17:31:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.