scMamba: A Pre-Trained Model for Single-Nucleus RNA Sequencing Analysis in Neurodegenerative Disorders
- URL: http://arxiv.org/abs/2502.19429v1
- Date: Wed, 12 Feb 2025 11:48:22 GMT
- Title: scMamba: A Pre-Trained Model for Single-Nucleus RNA Sequencing Analysis in Neurodegenerative Disorders
- Authors: Gyutaek Oh, Baekgyu Choi, Seyoung Jin, Inkyung Jung, Jong Chul Ye,
- Abstract summary: scMamba is a pre-trained model designed to improve the quality and utility of snRNA-seq analysis.<n>Inspired by the recent Mamba model, scMamba introduces a novel architecture that incorporates a linear adapter layer, gene embeddings, and bidirectional Mamba blocks.<n>We demonstrate that scMamba outperforms benchmark methods in various downstream tasks, including cell type annotation, doublet detection, imputation, and the identification of differentially expressed genes.
- Score: 43.24785083027205
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Single-nucleus RNA sequencing (snRNA-seq) has significantly advanced our understanding of the disease etiology of neurodegenerative disorders. However, the low quality of specimens derived from postmortem brain tissues, combined with the high variability caused by disease heterogeneity, makes it challenging to integrate snRNA-seq data from multiple sources for precise analyses. To address these challenges, we present scMamba, a pre-trained model designed to improve the quality and utility of snRNA-seq analysis, with a particular focus on neurodegenerative diseases. Inspired by the recent Mamba model, scMamba introduces a novel architecture that incorporates a linear adapter layer, gene embeddings, and bidirectional Mamba blocks, enabling efficient processing of snRNA-seq data while preserving information from the raw input. Notably, scMamba learns generalizable features of cells and genes through pre-training on snRNA-seq data, without relying on dimension reduction or selection of highly variable genes. We demonstrate that scMamba outperforms benchmark methods in various downstream tasks, including cell type annotation, doublet detection, imputation, and the identification of differentially expressed genes.
Related papers
- scBIT: Integrating Single-cell Transcriptomic Data into fMRI-based Prediction for Alzheimer's Disease Diagnosis [24.268703526039367]
scBIT is a novel method for enhancing Alzheimer's disease (AD) prediction by combining fMRI with single-nucleus RNA (snRNA)<n>It employs a sampling strategy to segment snRNA data into cell-type-specific gene networks and utilizes a self-explainable graph neural network to extract critical subgraphs.<n> Extensive experiments validate scBIT's effectiveness in revealing intricate brain region-gene associations.
arXiv Detail & Related papers (2025-02-04T18:37:46Z) - Pan-cancer gene set discovery via scRNA-seq for optimal deep learning based downstream tasks [6.869831177092736]
We analyzed scRNA-seq data from 181 tumor biopsies across 13 cancer types.
High-dimensional weighted gene co-expression network analysis (hdWGCNA) was performed to identify relevant gene sets.
Oncogenes from OncoKB evaluated with deep learning models, including multilayer perceptrons (MLPs) and graph neural networks (GNNs)
arXiv Detail & Related papers (2024-08-13T23:24:36Z) - LncRNA-disease association prediction method based on heterogeneous information completion and convolutional neural network [9.17998537192211]
The accuracy of lncRNA-disease associations (LDAs) is very important for the warning and treatment of diseases.
In this paper, a deep learning model based on a heterogeneous network and convolutional neural network (CNN) is proposed for lncRNA-disease association prediction, named HCNNLDA.
The experimental results show that the proposed model has better performance than that of several latest prediction models.
arXiv Detail & Related papers (2024-06-02T06:11:27Z) - Path-GPTOmic: A Balanced Multi-modal Learning Framework for Survival Outcome Prediction [14.204637932937082]
We introduce a new multi-modal Path-GPTOmic" framework for cancer survival outcome prediction.
We regulate the embedding space of a foundation model, scGPT, initially trained on single-cell RNA-seq data.
We propose a gradient modulation mechanism tailored to the Cox partial likelihood loss for survival prediction.
arXiv Detail & Related papers (2024-03-18T00:02:48Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
We introduce scHyena, a foundation model designed to address these challenges and enhance the accuracy of scRNA-seq analysis in the brain.
scHyena is equipped with a linear adaptor layer, the positional encoding via gene-embedding, and a bidirectional Hyena operator.
This enables us to process full-length scRNA-seq data without losing any information from the raw data.
arXiv Detail & Related papers (2023-10-04T10:30:08Z) - Fast and Functional Structured Data Generators Rooted in Out-of-Equilibrium Physics [44.97217246897902]
We address the challenge of using energy-based models to produce high-quality, label-specific data in structured datasets.
Traditional training methods encounter difficulties due to inefficient Markov chain Monte Carlo mixing.
We use a novel training algorithm that exploits non-equilibrium effects.
arXiv Detail & Related papers (2023-07-13T15:08:44Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
We introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio.
We show that some simulation-based approaches are more robust (and accurate) than others for specific embedding methods to certain adversarial attacks to the input sequences.
arXiv Detail & Related papers (2022-07-18T19:16:56Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.