Fast Unconstrained Optimization via Hessian Averaging and Adaptive Gradient Sampling Methods
- URL: http://arxiv.org/abs/2408.07268v1
- Date: Wed, 14 Aug 2024 03:27:48 GMT
- Title: Fast Unconstrained Optimization via Hessian Averaging and Adaptive Gradient Sampling Methods
- Authors: Thomas O'Leary-Roseberry, Raghu Bollapragada,
- Abstract summary: We consider minimizing finite-sum expectation objective functions via Hessian-averaging based subsampled Newton methods.
These methods allow for inexactness and have fixed per-it Hessian approximation costs.
We present novel analysis techniques and propose challenges for their practical implementation.
- Score: 0.3222802562733786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider minimizing finite-sum and expectation objective functions via Hessian-averaging based subsampled Newton methods. These methods allow for gradient inexactness and have fixed per-iteration Hessian approximation costs. The recent work (Na et al. 2023) demonstrated that Hessian averaging can be utilized to achieve fast $\mathcal{O}\left(\sqrt{\tfrac{\log k}{k}}\right)$ local superlinear convergence for strongly convex functions in high probability, while maintaining fixed per-iteration Hessian costs. These methods, however, require gradient exactness and strong convexity, which poses challenges for their practical implementation. To address this concern we consider Hessian-averaged methods that allow gradient inexactness via norm condition based adaptive-sampling strategies. For the finite-sum problem we utilize deterministic sampling techniques which lead to global linear and sublinear convergence rates for strongly convex and nonconvex functions respectively. In this setting we are able to derive an improved deterministic local superlinear convergence rate of $\mathcal{O}\left(\tfrac{1}{k}\right)$. For the %expected risk expectation problem we utilize stochastic sampling techniques, and derive global linear and sublinear rates for strongly convex and nonconvex functions, as well as a $\mathcal{O}\left(\tfrac{1}{\sqrt{k}}\right)$ local superlinear convergence rate, all in expectation. We present novel analysis techniques that differ from the previous probabilistic results. Additionally, we propose scalable and efficient variations of these methods via diagonal approximations and derive the novel diagonally-averaged Newton (Dan) method for large-scale problems. Our numerical results demonstrate that the Hessian averaging not only helps with convergence, but can lead to state-of-the-art performance on difficult problems such as CIFAR100 classification with ResNets.
Related papers
- Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
We focus on the class of (strongly) convex $(L0)$-smooth functions and derive new convergence guarantees for several existing methods.
In particular, we derive improved convergence rates for Gradient Descent with smoothnessed Gradient Clipping and for Gradient Descent with Polyak Stepsizes.
arXiv Detail & Related papers (2024-09-23T13:11:37Z) - An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes [17.804065824245402]
In machine learning applications, each loss function is non-negative and can be expressed as the composition of a square and its real-valued square root.
We show how to apply the Gauss-Newton method or the Levssquardt method to minimize the average of smooth but possibly non-negative functions.
arXiv Detail & Related papers (2024-07-05T08:53:06Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
We introduce a quant clipping strategy for Gradient Descent (SGD)
We use gradient new outliers as norm clipping chains.
We propose an implementation of the algorithm using Huberiles.
arXiv Detail & Related papers (2023-09-29T15:24:48Z) - Variance reduction techniques for stochastic proximal point algorithms [5.374800961359305]
In this work, we propose the first unified study of variance reduction techniques for proximal point algorithms.
We introduce a generic proximal-based algorithm that can be specified to give the proximal version of SVRG, SAGA, and some of their variants.
Our experiments demonstrate the advantages of the proximal variance reduction methods over their gradient counterparts.
arXiv Detail & Related papers (2023-08-18T05:11:50Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
We propose algorithms with high-probability convergence results under less restrictive assumptions.
These results justify the usage of the considered methods for solving problems that do not fit standard functional classes in optimization.
arXiv Detail & Related papers (2023-02-02T10:37:23Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Hessian Averaging in Stochastic Newton Methods Achieves Superlinear
Convergence [69.65563161962245]
We consider a smooth and strongly convex objective function using a Newton method.
We show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage.
arXiv Detail & Related papers (2022-04-20T07:14:21Z) - Non-asymptotic Superlinear Convergence of Standard Quasi-Newton Methods [26.328847475942894]
We prove the non-asymptotic superlinear convergence rate of the Broyden class of quasi-Newton algorithms.
Our results are first to provide a non-asymptotic superlinear convergence rate for quasi-Newton methods.
arXiv Detail & Related papers (2020-03-30T16:42:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.