Non-asymptotic Superlinear Convergence of Standard Quasi-Newton Methods
- URL: http://arxiv.org/abs/2003.13607v4
- Date: Tue, 30 Nov 2021 22:41:19 GMT
- Title: Non-asymptotic Superlinear Convergence of Standard Quasi-Newton Methods
- Authors: Qiujiang Jin and Aryan Mokhtari
- Abstract summary: We prove the non-asymptotic superlinear convergence rate of the Broyden class of quasi-Newton algorithms.
Our results are first to provide a non-asymptotic superlinear convergence rate for quasi-Newton methods.
- Score: 26.328847475942894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study and prove the non-asymptotic superlinear convergence
rate of the Broyden class of quasi-Newton algorithms which includes the
Davidon--Fletcher--Powell (DFP) method and the
Broyden--Fletcher--Goldfarb--Shanno (BFGS) method. The asymptotic superlinear
convergence rate of these quasi-Newton methods has been extensively studied in
the literature, but their explicit finite-time local convergence rate is not
fully investigated. In this paper, we provide a finite-time (non-asymptotic)
convergence analysis for Broyden quasi-Newton algorithms under the assumptions
that the objective function is strongly convex, its gradient is Lipschitz
continuous, and its Hessian is Lipschitz continuous at the optimal solution. We
show that in a local neighborhood of the optimal solution, the iterates
generated by both DFP and BFGS converge to the optimal solution at a
superlinear rate of $(1/k)^{k/2}$, where $k$ is the number of iterations. We
also prove a similar local superlinear convergence result holds for the case
that the objective function is self-concordant. Numerical experiments on
several datasets confirm our explicit convergence rate bounds. Our theoretical
guarantee is one of the first results that provide a non-asymptotic superlinear
convergence rate for quasi-Newton methods.
Related papers
- Online Learning Guided Quasi-Newton Methods with Global Non-Asymptotic Convergence [20.766358513158206]
We prove a global convergence rate of $O(min1/k,sqrtd/k1.25)$ in terms of the duality gap.
These results are the first global convergence results to demonstrate a provable advantage of a quasi-Newton method over the extragradient method.
arXiv Detail & Related papers (2024-10-03T16:08:16Z) - Fast Unconstrained Optimization via Hessian Averaging and Adaptive Gradient Sampling Methods [0.3222802562733786]
We consider minimizing finite-sum expectation objective functions via Hessian-averaging based subsampled Newton methods.
These methods allow for inexactness and have fixed per-it Hessian approximation costs.
We present novel analysis techniques and propose challenges for their practical implementation.
arXiv Detail & Related papers (2024-08-14T03:27:48Z) - Incremental Quasi-Newton Methods with Faster Superlinear Convergence
Rates [50.36933471975506]
We consider the finite-sum optimization problem, where each component function is strongly convex and has Lipschitz continuous gradient and Hessian.
The recently proposed incremental quasi-Newton method is based on BFGS update and achieves a local superlinear convergence rate.
This paper proposes a more efficient quasi-Newton method by incorporating the symmetric rank-1 update into the incremental framework.
arXiv Detail & Related papers (2024-02-04T05:54:51Z) - Limited-Memory Greedy Quasi-Newton Method with Non-asymptotic
Superlinear Convergence Rate [37.49160762239869]
We present a Limited-memory Greedy BFGS (LG-BFGS) method that can achieve an explicit non-asymptotic superlinear rate.
Our established non-asymptotic superlinear convergence rate demonstrates an explicit trade-off between the convergence speed and memory requirement.
arXiv Detail & Related papers (2023-06-27T12:59:56Z) - Convex and Non-convex Optimization Under Generalized Smoothness [69.69521650503431]
An analysis of convex and non- optimization methods often requires the Lipsitzness gradient, which limits the analysis by this trajectorys.
Recent work generalizes the gradient setting via the non-uniform smoothness condition.
arXiv Detail & Related papers (2023-06-02T04:21:59Z) - Online Learning Guided Curvature Approximation: A Quasi-Newton Method
with Global Non-Asymptotic Superlinear Convergence [22.286753988825048]
We present the first globally convergent quasi-Newton method with an explicit non-asymptotic superlinear convergence rate.
Unlike classical quasi-Newton methods, we build our algorithm upon the hybrid proximal extragradient method.
arXiv Detail & Related papers (2023-02-16T20:58:09Z) - Min-Max Optimization Made Simple: Approximating the Proximal Point
Method via Contraction Maps [77.8999425439444]
We present a first-order method that admits near-optimal convergence rates for convex/concave min-max problems.
Our work is based on the fact that the update rule of the Proximal Point method can be approximated up to accuracy.
arXiv Detail & Related papers (2023-01-10T12:18:47Z) - Hessian Averaging in Stochastic Newton Methods Achieves Superlinear
Convergence [69.65563161962245]
We consider a smooth and strongly convex objective function using a Newton method.
We show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage.
arXiv Detail & Related papers (2022-04-20T07:14:21Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.