On-the-fly Synthesis for LTL over Finite Traces: An Efficient Approach that Counts
- URL: http://arxiv.org/abs/2408.07324v1
- Date: Wed, 14 Aug 2024 06:52:58 GMT
- Title: On-the-fly Synthesis for LTL over Finite Traces: An Efficient Approach that Counts
- Authors: Shengping Xiao, Yongkang Li, Shufang Zhu, Jun Sun, Jianwen Li, Geguang Pu, Moshe Y. Vardi,
- Abstract summary: We present an on-the-fly framework for Linear Temporal Logic over finite traces (LTLf) based on top-down deterministic automata construction.
- Score: 20.14001970300658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an on-the-fly synthesis framework for Linear Temporal Logic over finite traces (LTLf) based on top-down deterministic automata construction. Existing approaches rely on constructing a complete Deterministic Finite Automaton (DFA) corresponding to the LTLf specification, a process with doubly exponential complexity relative to the formula size in the worst case. In this case, the synthesis procedure cannot be conducted until the entire DFA is constructed. This inefficiency is the main bottleneck of existing approaches. To address this challenge, we first present a method for converting LTLf into Transition-based DFA (TDFA) by directly leveraging LTLf semantics, incorporating intermediate results as direct components of the final automaton to enable parallelized synthesis and automata construction. We then explore the relationship between LTLf synthesis and TDFA games and subsequently develop an algorithm for performing LTLf synthesis using on-the-fly TDFA game solving. This algorithm traverses the state space in a global forward manner combined with a local backward method, along with the detection of strongly connected components. Moreover, we introduce two optimization techniques -- model-guided synthesis and state entailment -- to enhance the practical efficiency of our approach. Experimental results demonstrate that our on-the-fly approach achieves the best performance on the tested benchmarks and effectively complements existing tools and approaches.
Related papers
- Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
Linear temporal logic (LTL) is a powerful language for task specification in reinforcement learning.
We show that the synthesized reward signal remains fundamentally sparse, making exploration challenging.
We show how better exploration can be achieved by further leveraging the specification and casting its corresponding Limit Deterministic B"uchi Automaton (LDBA) as a Markov reward process.
arXiv Detail & Related papers (2024-08-18T14:25:44Z) - Guiding Enumerative Program Synthesis with Large Language Models [15.500250058226474]
In this paper, we evaluate the abilities of Large Language Models to solve formal synthesis benchmarks.
When one-shot synthesis fails, we propose a novel enumerative synthesis algorithm.
We find that GPT-3.5 as a stand-alone tool for formal synthesis is easily outperformed by state-of-the-art formal synthesis algorithms.
arXiv Detail & Related papers (2024-03-06T19:13:53Z) - OptEx: Expediting First-Order Optimization with Approximately Parallelized Iterations [12.696136981847438]
We introduce first-order optimization expedited with approximately parallelized iterations (OptEx)
OptEx is the first framework that enhances the efficiency of FOO by leveraging parallel computing to mitigate its iterative bottleneck.
We provide theoretical guarantees for the reliability of our kernelized gradient estimation and the complexity of SGD-based OptEx.
arXiv Detail & Related papers (2024-02-18T02:19:02Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Forward LTLf Synthesis: DPLL At Work [1.370633147306388]
We propose a new AND-OR graph search framework for synthesis of Linear Temporal Logic on finite traces (LTLf)
Within such framework, we devise a procedure inspired by the Davis-Putnam-Logemann-Loveland (DPLL) algorithm to generate the next available agent-environment moves.
We also propose a novel equivalence check for search nodes based on syntactic equivalence of state formulas.
arXiv Detail & Related papers (2023-02-27T14:33:50Z) - Hierarchical Optimization-Derived Learning [58.69200830655009]
We establish a new framework, named Hierarchical ODL (HODL), to simultaneously investigate the intrinsic behaviors of optimization-derived model construction and its corresponding learning process.
This is the first theoretical guarantee for these two coupled ODL components: optimization and learning.
arXiv Detail & Related papers (2023-02-11T03:35:13Z) - Synthesis from Satisficing and Temporal Goals [21.14507575500482]
An existing approach combines synthesis techniques from discounted synthesis with optimization for the DS rewards but has failed to yield a sound algorithm.
An alternative approach combining synthesis with satisficing DS rewards (rewards that achieve a threshold) is sound and complete for integer discount factors, but, in practice, a fractional discount factor is desired.
This work extends the existing satising approach to the first sound algorithm for synthesis from presenting DS rewards with fractional discount factors.
arXiv Detail & Related papers (2022-05-20T23:46:31Z) - Linear Temporal Logic Modulo Theories over Finite Traces (Extended
Version) [72.38188258853155]
This paper studies Linear Temporal Logic over Finite Traces (LTLf)
proposition letters are replaced with first-order formulas interpreted over arbitrary theories.
The resulting logic, called Satisfiability Modulo Theories (LTLfMT), is semi-decidable.
arXiv Detail & Related papers (2022-04-28T17:57:33Z) - Explaining Multi-stage Tasks by Learning Temporal Logic Formulas from
Suboptimal Demonstrations [6.950510860295866]
We present a method for learning multi-stage tasks from demonstrations by learning the logical structure and atomic propositions of a consistent linear temporal logic (LTL) formula.
The learner is given successful but potentially suboptimal demonstrations, where the demonstrator is optimizing a cost function while satisfying the formula, and the cost function is uncertain to the learner.
Our algorithm uses the Karush-Kuhn-Tucker (KKT) optimality conditions of the demonstrations together with a counter-example-guided falsification strategy to learn the atomic proposition parameters.
arXiv Detail & Related papers (2020-06-03T17:40:14Z) - Formal Synthesis of Lyapunov Neural Networks [61.79595926825511]
We propose an automatic and formally sound method for synthesising Lyapunov functions.
We employ a counterexample-guided approach where a numerical learner and a symbolic verifier interact to construct provably correct Lyapunov neural networks.
Our method synthesises Lyapunov functions faster and over wider spatial domains than the alternatives, yet providing stronger or equal guarantees.
arXiv Detail & Related papers (2020-03-19T17:21:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.