Problem Solving Through Human-AI Preference-Based Cooperation
- URL: http://arxiv.org/abs/2408.07461v2
- Date: Thu, 15 Aug 2024 15:54:58 GMT
- Title: Problem Solving Through Human-AI Preference-Based Cooperation
- Authors: Subhabrata Dutta, Timo Kaufmann, Goran Glavaš, Ivan Habernal, Kristian Kersting, Frauke Kreuter, Mira Mezini, Iryna Gurevych, Eyke Hüllermeier, Hinrich Schuetze,
- Abstract summary: We propose HAI-Co2, a novel human-AI co-construction framework.
We formalize HAI-Co2 and discuss the difficult open research problems that it faces.
We present a case study of HAI-Co2 and demonstrate its efficacy compared to monolithic generative AI models.
- Score: 74.39233146428492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While there is a widespread belief that artificial general intelligence (AGI) -- or even superhuman AI -- is imminent, complex problems in expert domains are far from being solved. We argue that such problems require human-AI cooperation and that the current state of the art in generative AI is unable to play the role of a reliable partner due to a multitude of shortcomings, including inability to keep track of a complex solution artifact (e.g., a software program), limited support for versatile human preference expression and lack of adapting to human preference in an interactive setting. To address these challenges, we propose HAI-Co2, a novel human-AI co-construction framework. We formalize HAI-Co2 and discuss the difficult open research problems that it faces. Finally, we present a case study of HAI-Co2 and demonstrate its efficacy compared to monolithic generative AI models.
Related papers
- "I Am the One and Only, Your Cyber BFF": Understanding the Impact of GenAI Requires Understanding the Impact of Anthropomorphic AI [55.99010491370177]
We argue that we cannot thoroughly map the social impacts of generative AI without mapping the social impacts of anthropomorphic AI.
anthropomorphic AI systems are increasingly prone to generating outputs that are perceived to be human-like.
arXiv Detail & Related papers (2024-10-11T04:57:41Z) - The Model Mastery Lifecycle: A Framework for Designing Human-AI Interaction [0.0]
The utilization of AI in an increasing number of fields is the latest iteration of a long process.
There is an urgent need for methods to determine how AI should be used in different situations.
arXiv Detail & Related papers (2024-08-23T01:00:32Z) - Attaining Human`s Desirable Outcomes in Human-AI Interaction via Structural Causal Games [34.34801907296059]
In human-AI interaction, a prominent goal is to attain humans desirable outcome with the assistance of AI agents.
We employ a theoretical framework called structural causal game (SCG) to formalize the human-AI interactive process.
We introduce a strategy referred to as pre-policy intervention on the SCG to steer AI agents towards attaining the humans desirable outcome.
arXiv Detail & Related papers (2024-05-26T14:42:49Z) - Applying HCAI in developing effective human-AI teaming: A perspective
from human-AI joint cognitive systems [10.746728034149989]
Research and application have used human-AI teaming (HAT) as a new paradigm to develop AI systems.
We elaborate on our proposed conceptual framework of human-AI joint cognitive systems (HAIJCS)
We propose a conceptual framework of human-AI joint cognitive systems (HAIJCS) to represent and implement HAT.
arXiv Detail & Related papers (2023-07-08T06:26:38Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - BO-Muse: A human expert and AI teaming framework for accelerated
experimental design [58.61002520273518]
Our algorithm lets the human expert take the lead in the experimental process.
We show that our algorithm converges sub-linearly, at a rate faster than the AI or human alone.
arXiv Detail & Related papers (2023-03-03T02:56:05Z) - AI-HRI Brings New Dimensions to Human-Aware Design for Human-Aware AI [2.512827436728378]
We will explore how AI-HRI can change the way researchers think about human-aware AI.
There is no greater opportunity for sharing perspectives at the moment than human-aware AI.
arXiv Detail & Related papers (2022-10-21T09:25:06Z) - A Mental-Model Centric Landscape of Human-AI Symbiosis [31.14516396625931]
We introduce a significantly general version of human-aware AI interaction scheme, called generalized human-aware interaction (GHAI)
We will see how this new framework allows us to capture the various works done in the space of human-AI interaction and identify the fundamental behavioral patterns supported by these works.
arXiv Detail & Related papers (2022-02-18T22:08:08Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
There is no clear definition of what is meant by Human Centered Artificial Intelligence.
This paper introduces the term HCAI agent to refer to any physical or software computational agent equipped with AI components.
We see the notion of HCAI agent, together with its components and functions, as a way to bridge the technical and non-technical discussions on human-centered AI.
arXiv Detail & Related papers (2021-12-29T09:58:59Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.