論文の概要: Large Language Models Know What Makes Exemplary Contexts
- arxiv url: http://arxiv.org/abs/2408.07505v1
- Date: Wed, 14 Aug 2024 12:32:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 13:24:15.179768
- Title: Large Language Models Know What Makes Exemplary Contexts
- Title(参考訳): 模範的文脈を作るための大言語モデル
- Authors: Quanyu Long, Jianda Chen,
- Abstract要約: In-context Learning (ICL) は、Large Language Model (LLM) の発展において重要な機能であることが証明されている。
本稿では,LLMのための統合フレームワークを提案する。このフレームワークにより,影響力のあるインコンテキストのサンプルを自己選択してコンテキストを構成することができる。
- 参考スコア(独自算出の注目度): 9.684017026004765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-context learning (ICL) has proven to be a significant capability with the advancement of Large Language models (LLMs). By instructing LLMs using few-shot demonstrative examples, ICL enables them to perform a wide range of tasks without needing to update millions of parameters. This paper presents a unified framework for LLMs that allows them to self-select influential in-context examples to compose their contexts; self-rank candidates with different demonstration compositions; self-optimize the demonstration selection and ordering through reinforcement learning. Specifically, our method designs a parameter-efficient retrieval head that generates the optimized demonstration after training with rewards from LLM's own preference. Experimental results validate the proposed method's effectiveness in enhancing ICL performance. Additionally, our approach effectively identifies and selects the most representative examples for the current task, and includes more diversity in retrieval.
- Abstract(参考訳): In-context Learning (ICL) は、Large Language Model (LLM) の発展において重要な機能であることが証明されている。
数発の実証例を使ってLLMを指示することにより、ICLは数百万のパラメータを更新することなく、幅広いタスクを実行できる。
本稿では,LLMを統合的に構築するフレームワークについて述べる。このフレームワークでは,文脈の異なる実演構成の自己選び方,実演選択の自己選び方,強化学習による順序付けを自己選び方で行うことができる。
具体的には,LLMの好みに基づいて,学習後に最適化された実演を生成するパラメータ効率の高い検索ヘッドを設計する。
ICL性能向上における提案手法の有効性を実験的に検証した。
さらに,本手法では,現在のタスクの最も代表的な例を効果的に識別し,選択し,検索の多様性を向上する。
関連論文リスト
- In-Context Learning with Reinforcement Learning for Incomplete Utterance Rewriting [33.89176174108559]
大規模言語モデル(LLM)の文脈内学習は、いくつかの例で拡張された命令に基づいて予測を行う。
ICLの既存の例選択方法はスパースまたは高密度レトリバーを使用し、有効性能を導出する。
本稿では,言語モデルセレクタとLLMジェネレータから構成される実例選択(RLS)のためのポリシーベース強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-23T12:32:12Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
大規模言語モデル(LLM)は、現実世界のアプリケーションで印象的な機能を示している。
これらの卓越した作品の品質は、パフォーマンスに大きな影響を与えます。
既存の方法は、先行注文がパフォーマンスに与える影響を適切に説明できない。
論文 参考訳(メタデータ) (2024-05-25T08:23:05Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
インコンテキスト学習(ICL)により、トランスフォーマーベースの言語モデルでは、パラメータを更新することなく、いくつかの"タスクデモ"で特定のタスクを学習することができる。
ICLの特徴に対処する影響関数に基づく帰属手法DETAILを提案する。
ホワイトボックスモデルで得られた属性スコアがブラックボックスモデルに転送可能であることを示すことにより、モデル性能を向上させる上で、DETAILの広範な適用性を実験的に証明する。
論文 参考訳(メタデータ) (2024-05-22T15:52:52Z) - Experimental Design for Active Transductive Inference in Large Language Models [18.2671641610825]
適応的なプロンプト設計にアクティブラーニングを使用し、それをアクティブ・インコンテクスト・プロンプト・デザイン(AIPD)と呼ぶ。
テストセットの性能を最適化するために、トレーニングセットから少数ショット例を適応的に選択し、LCMプロンプトを設計する。
GOとSALの2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-12T23:27:46Z) - Does In-Context Learning Really Learn? Rethinking How Large Language Models Respond and Solve Tasks via In-Context Learning [41.606494950216764]
In-context Learning (ICL)は、スケールアップされた大規模言語モデル(LLM)の開発と共に強力な能力として登場した。
本稿では,ICLの全体的な性能をラベル空間,フォーマット,識別の3次元に分解する。
ICLはラベル空間とフォーマットを制御し,所望のラベル語にLLMが反応するのに役立つことを示す。
論文 参考訳(メタデータ) (2024-04-11T08:20:10Z) - ParaICL: Towards Robust Parallel In-Context Learning [74.38022919598443]
大規模言語モデル(LLM)が自然言語処理の標準となっている。
インコンテキスト・ラーニング(ICL)は、いくつかの実演例の選択に依存している。
パラレルインコンテキスト学習(ParaICL)という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-31T05:56:15Z) - Dr.ICL: Demonstration-Retrieved In-context Learning [29.142262267850704]
インコンテキスト学習(ICL)は、LLMを使用するための強力なパラダイムとして、数発のデモでタスクを実行するために大きな言語モデルを教える。
最近の研究では、利用可能なデモのプールからの入力に対して意味論的に類似したデモを取得することで、より良いパフォーマンスが得られることが示唆されている。
この研究は、BM25のような単純な単語オーバーラップ類似度対策でさえ、ランダムに選択された実演よりも優れていることを示すことで、検索ベースのICLアプローチの適用性を拡大する。
論文 参考訳(メタデータ) (2023-05-23T14:55:25Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
本研究では,大規模言語モデル(LLM)における文脈内学習を促進する新しい2段階フレームワークを提案する。
具体的には、当社のフレームワークでは、ICLプロセスをDeep-ThinkingとTest Stageの2つの別々のステージに分類しています。
ディープシンキング段階にはユニークな注意機構、すなわち反復的な注意強化機構が組み込まれており、複数の情報の蓄積を可能にしている。
論文 参考訳(メタデータ) (2023-05-22T13:18:17Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。