Large Language Models Know What Makes Exemplary Contexts
- URL: http://arxiv.org/abs/2408.07505v2
- Date: Tue, 20 Aug 2024 06:50:48 GMT
- Title: Large Language Models Know What Makes Exemplary Contexts
- Authors: Quanyu Long, Jianda Chen, Wenya Wang, Sinno Jialin Pan,
- Abstract summary: In-context learning (ICL) has proven to be a significant capability with the advancement of Large Language models (LLMs)
This paper presents a unified framework for LLMs that allows them to self-select influential in-context examples to compose their contexts.
- Score: 42.90814615222177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In-context learning (ICL) has proven to be a significant capability with the advancement of Large Language models (LLMs). By instructing LLMs using few-shot demonstrative examples, ICL enables them to perform a wide range of tasks without needing to update millions of parameters. This paper presents a unified framework for LLMs that allows them to self-select influential in-context examples to compose their contexts; self-rank candidates with different demonstration compositions; self-optimize the demonstration selection and ordering through reinforcement learning. Specifically, our method designs a parameter-efficient retrieval head that generates the optimized demonstration after training with rewards from LLM's own preference. Experimental results validate the proposed method's effectiveness in enhancing ICL performance. Additionally, our approach effectively identifies and selects the most representative examples for the current task, and includes more diversity in retrieval.
Related papers
- In-Context Learning with Reinforcement Learning for Incomplete Utterance Rewriting [33.89176174108559]
In-context learning of large language models (LLMs) makes predictions only based on instructions augmented with a few examples.
Existing example selection methods for ICL utilize sparse or dense retrievers and derive effective performance.
We propose our policy-based reinforcement learning framework for example selection (RLS), which consists of a language model (LM) selector and an LLM generator.
arXiv Detail & Related papers (2024-08-23T12:32:12Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
Large language models (LLMs) have shown impressive capabilities in real-world applications.
The quality of these exemplars in the prompt greatly impacts performance.
Existing methods fail to adequately account for the impact of exemplar ordering on the performance.
arXiv Detail & Related papers (2024-05-25T08:23:05Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
In-context learning (ICL) allows transformer-based language models to learn a specific task with a few "task demonstrations" without updating their parameters.
We propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL.
We experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
arXiv Detail & Related papers (2024-05-22T15:52:52Z) - Experimental Design for Active Transductive Inference in Large Language Models [18.2671641610825]
We use active learning for adaptive prompt design and call it Active In-context Prompt Design (AIPD)
We design the LLM prompt by adaptively choosing few-shot examples from a training set to optimize performance on a test set.
We propose two algorithms, GO and SAL, which differ in how the few-shot examples are chosen.
arXiv Detail & Related papers (2024-04-12T23:27:46Z) - Does In-Context Learning Really Learn? Rethinking How Large Language Models Respond and Solve Tasks via In-Context Learning [41.606494950216764]
In-context Learning (ICL) has emerged as a powerful capability alongside the development of scaled-up large language models (LLMs)
This paper decomposes the overall performance of ICL into three dimensions, label space, format, and discrimination.
We show that ICL exhibits significant efficacy in regulating the label space and format, which helps LLMs respond to desired label words.
arXiv Detail & Related papers (2024-04-11T08:20:10Z) - ParaICL: Towards Robust Parallel In-Context Learning [74.38022919598443]
Large language models (LLMs) have become the norm in natural language processing.
Few-shot in-context learning (ICL) relies on the choice of few-shot demonstration examples.
We propose a novel method named parallel in-context learning (ParaICL)
arXiv Detail & Related papers (2024-03-31T05:56:15Z) - Dr.ICL: Demonstration-Retrieved In-context Learning [29.142262267850704]
In-context learning (ICL) teaching a large language model to perform a task with few-shot demonstrations has emerged as a strong paradigm for using LLMs.
Recent research suggests that retrieving semantically similar demonstrations to the input from a pool of available demonstrations results in better performance.
This work expands the applicability of retrieval-based ICL approaches by demonstrating that even simple word-overlap similarity measures such as BM25 outperform randomly selected demonstrations.
arXiv Detail & Related papers (2023-05-23T14:55:25Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
In this study, we introduce a novel two-stage framework to boost in-context learning in large language models (LLMs)
Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages.
The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation.
arXiv Detail & Related papers (2023-05-22T13:18:17Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
Large language models (LLMs) have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning.
We propose a simple but effective in-context learning framework called ICL-D3IE.
Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations.
arXiv Detail & Related papers (2023-03-09T06:24:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.