DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning
- URL: http://arxiv.org/abs/2405.14899v1
- Date: Wed, 22 May 2024 15:52:52 GMT
- Title: DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning
- Authors: Zijian Zhou, Xiaoqiang Lin, Xinyi Xu, Alok Prakash, Daniela Rus, Bryan Kian Hsiang Low,
- Abstract summary: In-context learning (ICL) allows transformer-based language models to learn a specific task with a few "task demonstrations" without updating their parameters.
We propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL.
We experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
- Score: 75.68193159293425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-context learning (ICL) allows transformer-based language models that are pre-trained on general text to quickly learn a specific task with a few "task demonstrations" without updating their parameters, significantly boosting their flexibility and generality. ICL possesses many distinct characteristics from conventional machine learning, thereby requiring new approaches to interpret this learning paradigm. Taking the viewpoint of recent works showing that transformers learn in context by formulating an internal optimizer, we propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL. We empirically verify the effectiveness of our approach for demonstration attribution while being computationally efficient. Leveraging the results, we then show how DETAIL can help improve model performance in real-world scenarios through demonstration reordering and curation. Finally, we experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
Related papers
- DemoShapley: Valuation of Demonstrations for In-Context Learning [20.26604061802236]
Large language models (LLMs) leveraging in-context learning (ICL) have set new benchmarks in few-shot learning across various tasks without needing task-specific fine-tuning.
We introduce DemoShapley which is inspired by the Data Shapley valuation theorem.
Our findings reveal that DemoShapley not only enhances model performance in terms of accuracy and fairness but also generalizes queries from domains distinct from those of the in-context demonstrations.
arXiv Detail & Related papers (2024-10-10T01:35:03Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Enhancing In-Context Learning via Implicit Demonstration Augmentation [26.78252788538567]
In-context learning (ICL) enables pre-trained language models to make predictions for unseen inputs without updating parameters.
Despite its potential, ICL's effectiveness heavily relies on the quality, quantity, and permutation of demonstrations.
In this paper, we tackle this challenge for the first time from the perspective of demonstration augmentation.
arXiv Detail & Related papers (2024-06-27T05:25:46Z) - Transformer-based Causal Language Models Perform Clustering [20.430255724239448]
We introduce a simplified instruction-following task and use synthetic datasets to analyze a Transformer-based causal language model.
Our findings suggest that the model learns task-specific information by clustering data within its hidden space, with this clustering process evolving dynamically during learning.
arXiv Detail & Related papers (2024-02-19T14:02:31Z) - Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning [13.964106147449051]
Existing solutions concentrate on fine-tuning the pre-trained models on conventional image datasets.
We propose a novel and effective framework based on learning Visual Prompts (VPT) in the pre-trained Vision Transformers (ViT)
We demonstrate that our new approximations with semantic information are superior to representative capabilities.
arXiv Detail & Related papers (2024-02-04T04:42:05Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
Large language models (LLMs) have shown an impressive ability to perform a wide range of tasks using in-context learning (ICL)
In this work, we first revisit the factors contributing to this variance from both data and model aspects, and find that the choice of demonstration is both data- and model-dependent.
We propose a data- and model-dependent demonstration selection method, textbfTopK + ConE, based on the assumption that textitthe performance of a demonstration positively correlates with its contribution to the model's understanding of the test samples.
arXiv Detail & Related papers (2024-01-22T16:25:27Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - Multi-Stage Influence Function [97.19210942277354]
We develop a multi-stage influence function score to track predictions from a finetuned model all the way back to the pretraining data.
We study two different scenarios with the pretrained embeddings fixed or updated in the finetuning tasks.
arXiv Detail & Related papers (2020-07-17T16:03:11Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.