CNN-JEPA: Self-Supervised Pretraining Convolutional Neural Networks Using Joint Embedding Predictive Architecture
- URL: http://arxiv.org/abs/2408.07514v2
- Date: Tue, 11 Mar 2025 09:42:28 GMT
- Title: CNN-JEPA: Self-Supervised Pretraining Convolutional Neural Networks Using Joint Embedding Predictive Architecture
- Authors: András Kalapos, Bálint Gyires-Tóth,
- Abstract summary: Self-supervised learning (SSL) has become an important approach in pretraining large neural networks.<n>We introduce CNN-JEPA, a novel SSL method that successfully applies the joint embedding predictive architecture approach to CNNs.<n>Our method incorporates a sparse CNN encoder to handle masked inputs, a fully convolutional predictor using depthwise separable convolutions, and an improved masking strategy.
- Score: 5.0337106694127725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning (SSL) has become an important approach in pretraining large neural networks, enabling unprecedented scaling of model and dataset sizes. While recent advances like I-JEPA have shown promising results for Vision Transformers, adapting such methods to Convolutional Neural Networks (CNNs) presents unique challenges. In this paper, we introduce CNN-JEPA, a novel SSL method that successfully applies the joint embedding predictive architecture approach to CNNs. Our method incorporates a sparse CNN encoder to handle masked inputs, a fully convolutional predictor using depthwise separable convolutions, and an improved masking strategy. We demonstrate that CNN-JEPA outperforms I-JEPA with ViT architectures on ImageNet-100, achieving a 73.3% linear top-1 accuracy using a standard ResNet-50 encoder. Compared to other CNN-based SSL methods, CNN-JEPA requires 17-35% less training time for the same number of epochs and approaches the linear and k-NN top-1 accuracies of BYOL, SimCLR, and VICReg. Our approach offers a simpler, more efficient alternative to existing SSL methods for CNNs, requiring minimal augmentations and no separate projector network.
Related papers
- Raw Audio Classification with Cosine Convolutional Neural Network (CosCovNN) [1.0237120900821557]
This study introduces the Cosine Convolutional Neural Network (CosCovNN) replacing the traditional CNN filters with Cosine filters.
The CosCovNN surpasses the accuracy of the equivalent CNN architectures with approximately $77%$ less parameters.
Our findings show that cosine filters can greatly improve the efficiency and accuracy of CNNs in raw audio classification.
arXiv Detail & Related papers (2024-11-30T01:39:16Z) - Model Parallel Training and Transfer Learning for Convolutional Neural Networks by Domain Decomposition [0.0]
Deep convolutional neural networks (CNNs) have been shown to be very successful in a wide range of image processing applications.
Due to their increasing number of model parameters and an increasing availability of large amounts of training data, parallelization strategies to efficiently train complex CNNs are necessary.
arXiv Detail & Related papers (2024-08-26T17:35:01Z) - OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation [70.17681136234202]
We reexamine the design distinctions and test the limits of what a sparse CNN can achieve.
We propose two key components, i.e., adaptive receptive fields (spatially) and adaptive relation, to bridge the gap.
This exploration led to the creation of Omni-Adaptive 3D CNNs (OA-CNNs), a family of networks that integrates a lightweight module.
arXiv Detail & Related papers (2024-03-21T14:06:38Z) - An Efficient Evolutionary Deep Learning Framework Based on Multi-source
Transfer Learning to Evolve Deep Convolutional Neural Networks [8.40112153818812]
Convolutional neural networks (CNNs) have constantly achieved better performance over years by introducing more complex topology, and enlarging the capacity towards deeper and wider CNNs.
The computational cost is still the bottleneck of automatically designing CNNs.
In this paper, inspired by transfer learning, a new evolutionary computation based framework is proposed to efficiently evolve CNNs.
arXiv Detail & Related papers (2022-12-07T20:22:58Z) - InternImage: Exploring Large-Scale Vision Foundation Models with
Deformable Convolutions [95.94629864981091]
This work presents a new large-scale CNN-based foundation model, termed InternImage, which can obtain the gain from increasing parameters and training data like ViTs.
The proposed InternImage reduces the strict inductive bias of traditional CNNs and makes it possible to learn stronger and more robust patterns with large-scale parameters from massive data like ViTs.
arXiv Detail & Related papers (2022-11-10T18:59:04Z) - Towards Enabling Dynamic Convolution Neural Network Inference for Edge
Intelligence [0.0]
Recent advances in edge intelligence require CNN inference on edge network to increase throughput and reduce latency.
To provide flexibility, dynamic parameter allocation to different mobile devices is required to implement either a predefined or defined on-the-fly CNN architecture.
We propose a library-based approach to design scalable and dynamic distributed CNN inference on the fly.
arXiv Detail & Related papers (2022-02-18T22:33:42Z) - Exploiting Hybrid Models of Tensor-Train Networks for Spoken Command
Recognition [9.262289183808035]
This work aims to design a low complexity spoken command recognition (SCR) system.
We exploit a deep hybrid architecture of a tensor-train (TT) network to build an end-to-end SRC pipeline.
Our proposed CNN+(TT-DNN) model attains a competitive accuracy of 96.31% with 4 times fewer model parameters than the CNN model.
arXiv Detail & Related papers (2022-01-11T05:57:38Z) - Greedy Network Enlarging [53.319011626986004]
We propose a greedy network enlarging method based on the reallocation of computations.
With step-by-step modifying the computations on different stages, the enlarged network will be equipped with optimal allocation and utilization of MACs.
With application of our method on GhostNet, we achieve state-of-the-art 80.9% and 84.3% ImageNet top-1 accuracies.
arXiv Detail & Related papers (2021-07-31T08:36:30Z) - Transformed CNNs: recasting pre-trained convolutional layers with
self-attention [17.96659165573821]
Vision Transformers (ViT) have emerged as a powerful alternative to convolutional networks (CNNs)
In this work, we explore the idea of reducing the time spent training these layers by initializing them as convolutional layers.
With only 50 epochs of fine-tuning, the resulting T-CNNs demonstrate significant performance gains.
arXiv Detail & Related papers (2021-06-10T14:56:10Z) - Container: Context Aggregation Network [83.12004501984043]
Recent finding shows that a simple based solution without any traditional convolutional or Transformer components can produce effective visual representations.
We present the model (CONText Ion NERtwok), a general-purpose building block for multi-head context aggregation.
In contrast to Transformer-based methods that do not scale well to downstream tasks that rely on larger input image resolutions, our efficient network, named modellight, can be employed in object detection and instance segmentation networks.
arXiv Detail & Related papers (2021-06-02T18:09:11Z) - Exploring Deep Hybrid Tensor-to-Vector Network Architectures for
Regression Based Speech Enhancement [53.47564132861866]
We find that a hybrid architecture, namely CNN-TT, is capable of maintaining a good quality performance with a reduced model parameter size.
CNN-TT is composed of several convolutional layers at the bottom for feature extraction to improve speech quality.
arXiv Detail & Related papers (2020-07-25T22:21:05Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.