Raw Audio Classification with Cosine Convolutional Neural Network (CosCovNN)
- URL: http://arxiv.org/abs/2412.00312v1
- Date: Sat, 30 Nov 2024 01:39:16 GMT
- Title: Raw Audio Classification with Cosine Convolutional Neural Network (CosCovNN)
- Authors: Kazi Nazmul Haque, Rajib Rana, Tasnim Jarin, Bjorn W. Schuller Jr,
- Abstract summary: This study introduces the Cosine Convolutional Neural Network (CosCovNN) replacing the traditional CNN filters with Cosine filters.
The CosCovNN surpasses the accuracy of the equivalent CNN architectures with approximately $77%$ less parameters.
Our findings show that cosine filters can greatly improve the efficiency and accuracy of CNNs in raw audio classification.
- Score: 1.0237120900821557
- License:
- Abstract: This study explores the field of audio classification from raw waveform using Convolutional Neural Networks (CNNs), a method that eliminates the need for extracting specialised features in the pre-processing step. Unlike recent trends in literature, which often focuses on designing frontends or filters for only the initial layers of CNNs, our research introduces the Cosine Convolutional Neural Network (CosCovNN) replacing the traditional CNN filters with Cosine filters. The CosCovNN surpasses the accuracy of the equivalent CNN architectures with approximately $77\%$ less parameters. Our research further progresses with the development of an augmented CosCovNN named Vector Quantised Cosine Convolutional Neural Network with Memory (VQCCM), incorporating a memory and vector quantisation layer VQCCM achieves state-of-the-art (SOTA) performance across five different datasets in comparison with existing literature. Our findings show that cosine filters can greatly improve the efficiency and accuracy of CNNs in raw audio classification.
Related papers
- Benchmarking Quantum Convolutional Neural Networks for Signal Classification in Simulated Gamma-Ray Burst Detection [29.259008600842517]
This study evaluates the use of Quantum Convolutional Neural Networks (QCNNs) for identifying signals resembling Gamma-Ray Bursts (GRBs)
We implement a hybrid quantum-classical machine learning technique using the Qiskit framework, with the QCNNs trained on a quantum simulator.
QCNNs showed robust performance on time-series datasets, successfully detecting GRB signals with high precision.
arXiv Detail & Related papers (2025-01-28T16:07:12Z) - Dynamic Semantic Compression for CNN Inference in Multi-access Edge
Computing: A Graph Reinforcement Learning-based Autoencoder [82.8833476520429]
We propose a novel semantic compression method, autoencoder-based CNN architecture (AECNN) for effective semantic extraction and compression in partial offloading.
In the semantic encoder, we introduce a feature compression module based on the channel attention mechanism in CNNs, to compress intermediate data by selecting the most informative features.
In the semantic decoder, we design a lightweight decoder to reconstruct the intermediate data through learning from the received compressed data to improve accuracy.
arXiv Detail & Related papers (2024-01-19T15:19:47Z) - Optimizing Convolutional Neural Network Architecture [0.0]
Convolutional Neural Networks (CNN) are widely used to face challenging tasks like speech recognition, natural language processing or computer vision.
We propose Optimizing Convolutional Neural Network Architecture (OCNNA), a novel CNN optimization and construction method based on pruning and knowledge distillation.
Our method has been compared with more than 20 convolutional neural network simplification algorithms obtaining outstanding results.
arXiv Detail & Related papers (2023-12-17T12:23:11Z) - A Quantum Convolutional Neural Network Approach for Object Detection and
Classification [0.0]
The time and accuracy of QCNNs are compared with classical CNNs and ANN models under different conditions.
The analysis shows that QCNNs have the potential to outperform both classical CNNs and ANN models in terms of accuracy and efficiency for certain applications.
arXiv Detail & Related papers (2023-07-17T02:38:04Z) - Attention-based Feature Compression for CNN Inference Offloading in Edge
Computing [93.67044879636093]
This paper studies the computational offloading of CNN inference in device-edge co-inference systems.
We propose a novel autoencoder-based CNN architecture (AECNN) for effective feature extraction at end-device.
Experiments show that AECNN can compress the intermediate data by more than 256x with only about 4% accuracy loss.
arXiv Detail & Related papers (2022-11-24T18:10:01Z) - Spiking Neural Network Decision Feedback Equalization [70.3497683558609]
We propose an SNN-based equalizer with a feedback structure akin to the decision feedback equalizer (DFE)
We show that our approach clearly outperforms conventional linear equalizers for three different exemplary channels.
The proposed SNN with a decision feedback structure enables the path to competitive energy-efficient transceivers.
arXiv Detail & Related papers (2022-11-09T09:19:15Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Quantum convolutional neural network for classical data classification [0.8057006406834467]
We benchmark fully parameterized quantum convolutional neural networks (QCNNs) for classical data classification.
We propose a quantum neural network model inspired by CNN that only uses two-qubit interactions throughout the entire algorithm.
arXiv Detail & Related papers (2021-08-02T06:48:34Z) - Genetic U-Net: Automatically Designed Deep Networks for Retinal Vessel
Segmentation Using a Genetic Algorithm [2.6629444004809826]
Genetic U-Net is proposed to generate a U-shaped convolutional neural network (CNN) that can achieve better retinal vessel segmentation but with fewer architecture-based parameters.
The experimental results show that the architecture obtained using the proposed method offered a superior performance with less than 1% of the number of the original U-Net parameters in particular.
arXiv Detail & Related papers (2020-10-29T13:31:36Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z) - Computational optimization of convolutional neural networks using
separated filters architecture [69.73393478582027]
We consider a convolutional neural network transformation that reduces computation complexity and thus speedups neural network processing.
Use of convolutional neural networks (CNN) is the standard approach to image recognition despite the fact they can be too computationally demanding.
arXiv Detail & Related papers (2020-02-18T17:42:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.