論文の概要: Fast Inference for Probabilistic Answer Set Programs via the Residual Program
- arxiv url: http://arxiv.org/abs/2408.07524v1
- Date: Wed, 14 Aug 2024 12:58:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 13:14:29.222907
- Title: Fast Inference for Probabilistic Answer Set Programs via the Residual Program
- Title(参考訳): 残差プログラムによる確率的アンサーセットプログラムの高速推論
- Authors: Damiano Azzolini, Fabrizio Riguzzi,
- Abstract要約: プログラムのいくつかの部分はクエリの確率に影響を与えず、グラウンドのサイズに影響を与えます。
本稿では,残余プログラムを利用した推論手法を提案する。
グラフデータセットの実証的な結果は、このアプローチがはるかに高速な推論につながることを示している。
- 参考スコア(独自算出の注目度): 0.18416014644193066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When we want to compute the probability of a query from a Probabilistic Answer Set Program, some parts of a program may not influence the probability of a query, but they impact on the size of the grounding. Identifying and removing them is crucial to speed up the computation. Algorithms for SLG resolution offer the possibility of returning the residual program which can be used for computing answer sets for normal programs that do have a total well-founded model. The residual program does not contain the parts of the program that do not influence the probability. In this paper, we propose to exploit the residual program for performing inference. Empirical results on graph datasets show that the approach leads to significantly faster inference.
- Abstract(参考訳): 確率的アンサーセットプログラムからクエリの確率を計算したい場合、プログラムのいくつかの部分はクエリの確率に影響を与えず、グラウンドのサイズに影響を与えます。
それらを特定して取り除くことは、計算のスピードアップに不可欠である。
SLG解像度のアルゴリズムは、完全に確立されたモデルを持つ正規プログラムの解集合の計算に使用できる残余プログラムを返す可能性を提供する。
残余プログラムは、確率に影響を与えないプログラムの一部を含んでいない。
本稿では,残余プログラムを利用した推論手法を提案する。
グラフデータセットの実証的な結果は、このアプローチがはるかに高速な推論につながることを示している。
関連論文リスト
- Probabilistic Answer Set Programming with Discrete and Continuous Random Variables [0.18416014644193066]
Probabilistic Answer Set Programming (PASP)は、不確実な情報を表す確率的事実でAnswer Set Programmingを拡張します。
我々はHPASP(Hybrid Probabilistic Answer Set Programming)を提案する。
本稿では,予測された回答集合列挙と知識コンパイルに基づいて,2つの正確なアルゴリズムの性能を議論し,実装し,評価する。
論文 参考訳(メタデータ) (2024-09-30T13:24:42Z) - "Would life be more interesting if I were in AI?" Answering
Counterfactuals based on Probabilistic Inductive Logic Programming [0.0]
本稿では,因果的クエリを許容する因果的フレームワークを用いて確率論的論理プログラムについて検討する。
観測データからプログラム構造を学習することは、統計検査に依存する探索によって行われるのが普通である。
本稿では,プログラムの帰納分布からプログラムを再構築する言語フラグメントを提案する。
論文 参考訳(メタデータ) (2023-08-30T09:03:45Z) - System Predictor: Grounding Size Estimator for Logic Programs under
Answer Set Semantics [0.5801044612920815]
本稿では,プログラムの基底サイズを推定するシステム予測器を提案する。
本稿では,Productor と Lpopt が生成したリライトのガイドとして使用するPredictor の効果を評価する。
論文 参考訳(メタデータ) (2023-03-29T20:49:40Z) - Hierarchical Programmatic Reinforcement Learning via Learning to Compose
Programs [58.94569213396991]
プログラムポリシーを作成するための階層型プログラム強化学習フレームワークを提案する。
提案するフレームワークは,プログラム作成の学習を通じて,アウト・オブ・ディストリビュータの複雑な動作を記述するプログラムポリシーを作成することができる。
Karel ドメインの実験結果から,提案するフレームワークがベースラインより優れていることが示された。
論文 参考訳(メタデータ) (2023-01-30T14:50:46Z) - Learning from Self-Sampled Correct and Partially-Correct Programs [96.66452896657991]
そこで本研究では,モデルが学習中にサンプリングを行い,自己サンプリングされた完全正当プログラムと部分正当プログラムの両方から学習することを提案する。
自己サンプリング型プログラムと部分修正型プログラムを併用することで,学習とサンプリングプロセスのガイドに役立てることができることを示す。
提案手法は,MLEを用いた単一の参照プログラムからの学習と比較して,パス@kの性能を3.1%から12.3%向上させる。
論文 参考訳(メタデータ) (2022-05-28T03:31:07Z) - Foundation Posteriors for Approximate Probabilistic Inference [11.64841553345271]
我々は確率的プログラムにおいて、推論をマスク付き言語モデリングとして定式化する。
ニューラルネットワークをトレーニングしてランダムな値を解き放ち、近似した後続分布を定義する。
提案手法の有効性をSTANプログラムのベンチマークで示す。
論文 参考訳(メタデータ) (2022-05-19T17:42:37Z) - Program Analysis of Probabilistic Programs [3.299672391663527]
プログラム解析を用いて確率的プログラミングを改善するための3つの新しい手法を提案する。
このテクニックは確率的プログラムを分析し、推論をより効率的にするためにそれを適用する。
論文 参考訳(メタデータ) (2022-04-14T10:40:54Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
分割関数やMAP推定をペアワイズMRFで効率的に計算する手法を提案する。
一般のバイナリMRFから完全多クラス設定への半定緩和を拡張し、解法を用いて再び効率的に解けるようなコンパクトな半定緩和を開発する。
論文 参考訳(メタデータ) (2020-12-04T15:36:29Z) - PClean: Bayesian Data Cleaning at Scale with Domain-Specific
Probabilistic Programming [65.88506015656951]
我々は、データセット固有の知識を活用して汚いデータのクリーン化と正規化を行う確率的プログラミング言語であるPCleanを提案する。
PCleanは、(1)確率的プログラムでカスタマイズ可能なリレーショナルデータベースインスタンスの非パラメトリックモデル、(2)モデルの構造を利用するシーケンシャルなモンテカルロ推論アルゴリズム、(3)ほぼ最適のSMC提案とブロックされたギブス再構成の3つのモデルと推論コントリビューションを利用している。
論文 参考訳(メタデータ) (2020-07-23T08:01:47Z) - Can We Learn Heuristics For Graphical Model Inference Using
Reinforcement Learning? [114.24881214319048]
我々は、強化学習を用いて、高次条件ランダム場(CRF)における推論を解くためのプログラム、すなわち、ポリシーを学習できることを示します。
本手法は,ポテンシャルの形式に制約を加えることなく,推論タスクを効率的に解く。
論文 参考訳(メタデータ) (2020-04-27T19:24:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。