Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?
- URL: http://arxiv.org/abs/2408.07588v2
- Date: Fri, 13 Dec 2024 19:36:43 GMT
- Title: Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?
- Authors: Guiomar Pescador-Barrios, Sarah Filippi, Mark van der Wilk,
- Abstract summary: Many machine learning models require setting a parameter that controls their size before training.<n>This leads to the question How big is big enough?''<n>Here, data becomes available incrementally, and the final dataset size will therefore not be known before training.<n>We develop a method to automatically adjust model size while maintaining near optimal performance.
- Score: 11.43983519639935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many machine learning models require setting a parameter that controls their size before training, e.g.~number of neurons in DNNs, or inducing points in GPs. Increasing capacity typically improves performance until all the information from the dataset is captured. After this point, computational cost keeps increasing without improved performance. This leads to the question ``How big is big enough?'' We investigate this problem for Gaussian processes (single-layer neural networks) in continual learning. Here, data becomes available incrementally, and the final dataset size will therefore not be known before training, preventing the use of heuristics for setting a fixed model size. We develop a method to automatically adjust model size while maintaining near-optimal performance. Our experimental procedure follows the constraint that any hyperparameters must be set without seeing dataset properties. For our method, a single hyperparameter setting works well across diverse datasets, showing that it requires less tuning compared to others.
Related papers
- DataDecide: How to Predict Best Pretraining Data with Small Experiments [67.95896457895404]
We release models, data, and evaluations in DataDecide -- the most extensive open suite of models over differences in data and scale.
We conduct controlled pretraining experiments across 25 corpora with differing sources, deduplication, and filtering up to 100B tokens, model sizes up to 1B parameters, and 3 random seeds.
arXiv Detail & Related papers (2025-04-15T17:02:15Z) - Predictable Scale: Part I -- Optimal Hyperparameter Scaling Law in Large Language Model Pretraining [56.58170370127227]
We show that optimal learning rate follows a power-law relationship with both model parameters and data sizes, while optimal batch size scales primarily with data sizes.
This work is the first work that unifies different model shapes and structures, such as Mixture-of-Experts models and dense transformers.
arXiv Detail & Related papers (2025-03-06T18:58:29Z) - Fast training of large kernel models with delayed projections [14.459817519150997]
We present a new methodology for building kernel machines that can scale efficiently with both data size and model size.
Our algorithm introduces delayed projections to Preconditioned Gradient Descent (PSGD) allowing the training of much larger models than was previously feasible.
We validate our algorithm, EigenPro4, demonstrating drastic training speed up over the existing methods while maintaining comparable or better classification accuracy.
arXiv Detail & Related papers (2024-11-25T18:42:13Z) - Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - Scaling Retrieval-Based Language Models with a Trillion-Token Datastore [85.4310806466002]
We find that increasing the size of the datastore used by a retrieval-based LM monotonically improves language modeling and several downstream tasks without obvious saturation.
By plotting compute-optimal scaling curves with varied datastore, model, and pretraining data sizes, we show that using larger datastores can significantly improve model performance for the same training compute budget.
arXiv Detail & Related papers (2024-07-09T08:27:27Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
We analyze a random feature model trained with gradient descent as a solvable model of network training and generalization.
Our theory shows how the gap between training and test loss can gradually build up over time due to repeated reuse of data.
arXiv Detail & Related papers (2024-02-02T01:41:38Z) - Bad Students Make Great Teachers: Active Learning Accelerates Large-Scale Visual Understanding [9.112203072394648]
Power-law scaling indicates that large-scale training with uniform sampling is prohibitively slow.
Active learning methods aim to increase data efficiency by prioritizing learning on the most relevant examples.
arXiv Detail & Related papers (2023-12-08T19:26:13Z) - Efficiently Robustify Pre-trained Models [18.392732966487582]
robustness of large scale models towards real-world settings is still a less-explored topic.
We first benchmark the performance of these models under different perturbations and datasets.
We then discuss on how complete model fine-tuning based existing robustification schemes might not be a scalable option given very large scale networks.
arXiv Detail & Related papers (2023-09-14T08:07:49Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Hyperparameter-free Continuous Learning for Domain Classification in
Natural Language Understanding [60.226644697970116]
Domain classification is the fundamental task in natural language understanding (NLU)
Most existing continual learning approaches suffer from low accuracy and performance fluctuation.
We propose a hyper parameter-free continual learning model for text data that can stably produce high performance under various environments.
arXiv Detail & Related papers (2022-01-05T02:46:16Z) - Training Neural Networks with Fixed Sparse Masks [19.58969772430058]
Recent work has shown that it is possible to update only a small subset of the model's parameters during training.
We show that it is possible to induce a fixed sparse mask on the model's parameters that selects a subset to update over many iterations.
arXiv Detail & Related papers (2021-11-18T18:06:01Z) - Parameter-Efficient Transfer from Sequential Behaviors for User Modeling
and Recommendation [111.44445634272235]
In this paper, we develop a parameter efficient transfer learning architecture, termed as PeterRec.
PeterRec allows the pre-trained parameters to remain unaltered during fine-tuning by injecting a series of re-learned neural networks.
We perform extensive experimental ablation to show the effectiveness of the learned user representation in five downstream tasks.
arXiv Detail & Related papers (2020-01-13T14:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.