論文の概要: Optimizing HIV Patient Engagement with Reinforcement Learning in Resource-Limited Settings
- arxiv url: http://arxiv.org/abs/2408.07629v1
- Date: Wed, 14 Aug 2024 15:55:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 12:53:17.485474
- Title: Optimizing HIV Patient Engagement with Reinforcement Learning in Resource-Limited Settings
- Title(参考訳): 資源制限条件下での強化学習によるHIV患者エンゲージメントの最適化
- Authors: África Periáñez, Kathrin Schmitz, Lazola Makhupula, Moiz Hassan, Moeti Moleko, Ana Fernández del Río, Ivan Nazarov, Aditya Rastogi, Dexian Tang,
- Abstract要約: CHARMアプリは、コミュニティヘルスワーカー(CHW)のためのAIネイティブモバイルアプリ
本稿では、CHARMの開発、統合、および今後の強化学習に基づく適応的介入について詳述する。
- 参考スコア(独自算出の注目度): 2.619524972111665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: By providing evidence-based clinical decision support, digital tools and electronic health records can revolutionize patient management, especially in resource-poor settings where fewer health workers are available and often need more training. When these tools are integrated with AI, they can offer personalized support and adaptive interventions, effectively connecting community health workers (CHWs) and healthcare facilities. The CHARM (Community Health Access & Resource Management) app is an AI-native mobile app for CHWs. Developed through a joint partnership of Causal Foundry (CF) and mothers2mothers (m2m), CHARM empowers CHWs, mainly local women, by streamlining case management, enhancing learning, and improving communication. This paper details CHARM's development, integration, and upcoming reinforcement learning-based adaptive interventions, all aimed at enhancing health worker engagement, efficiency, and patient outcomes, thereby enhancing CHWs' capabilities and community health.
- Abstract(参考訳): 証拠に基づく臨床意思決定の支援を提供することで、デジタルツールと電子健康記録は患者の管理に革命をもたらす可能性がある。
これらのツールがAIと統合されると、パーソナライズされたサポートと適応的な介入を提供し、コミュニティヘルスワーカー(CHW)と医療施設を効果的に結びつけることができる。
CHARM(Community Health Access & Resource Management)は、CHWのためのAIネイティブモバイルアプリである。
Causal Foundry(CF)とmas2mothers(m2m)の協力によって開発されたCHARMは、ケース管理の合理化、学習の強化、コミュニケーションの改善によって、主に地元の女性であるCHWに権限を与える。
本稿では,CHARMの発展,統合,および今後の強化学習に基づく適応的介入について詳述する。
関連論文リスト
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - The Digital Transformation in Health: How AI Can Improve the Performance of Health Systems [2.8351008282227266]
モバイルヘルスは、医療提供と患者のエンゲージメントに革命をもたらす可能性がある。
適応的な介入の配信を可能にする人工知能と強化学習プラットフォームを提案する。
このプラットフォームの柔軟性は、さまざまなモバイルヘルスアプリケーションやデジタルデバイスに接続し、パーソナライズされたレコメンデーションを送信することで、デジタルツールがヘルスシステムの結果に与える影響を大幅に改善することができる。
論文 参考訳(メタデータ) (2024-09-24T13:52:15Z) - Cooperative Cognitive Dynamic System in UAV Swarms: Reconfigurable Mechanism and Framework [80.39138462246034]
UAVスワムの管理を最適化するための協調認知力学システム(CCDS)を提案する。
CCDSは階層的かつ協調的な制御構造であり、リアルタイムのデータ処理と意思決定を可能にする。
さらに、CCDSは、UAVスワムのタスクを効率的に割り当てるための生体模倣機構と統合することができる。
論文 参考訳(メタデータ) (2024-05-18T12:45:00Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - Integration and Implementation Strategies for AI Algorithm Deployment
with Smart Routing Rules and Workflow Management [0.37918614538294315]
本稿では、医療産業における人工知能(AI)ソリューションの普及を妨げる課題について概説する。
AI開発のための標準化されたフレームワークが存在しないことは、大きな障壁となり、それに対応するために新しいパラダイムが必要である。
本稿では,医療分野における異種アプリケーションの連携における相互運用の役割について検討する。
論文 参考訳(メタデータ) (2023-11-17T19:38:37Z) - Deep Reinforcement Learning for Efficient and Fair Allocation of Health Care Resources [47.57108369791273]
医療資源の枯渇は、レーションの避けられない結果をもたらす可能性がある。
医療資源割り当てプロトコルの普遍的な標準は存在しない。
本稿では,患者の疾患進行と患者間の相互作用効果を統合するためのトランスフォーマーベースのディープQネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-15T17:28:06Z) - User Engagement in Mobile Health Applications [0.0]
モバイルヘルスアプリは、コミュニケーション、効率、サービスの品質を改善することで、医療エコシステムに革命をもたらしている。
低所得国や中所得国では、患者や医療従事者の健康状態や行動に関する情報の源泉としての役割も担っている。
本稿では,医療従事者や医療従事者を支援するデジタルヘルスアプリに焦点をあて,モバイルヘルスへのユーザエンゲージメントを研究するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-16T13:45:00Z) - Integration of Remote Patient Monitoring Systems into Physicians Work in
Underserved Communities: Survey of Healthcare Provider Perspectives [0.0]
遠隔患者モニタリング技術は、未整備の地域社会におけるケアへのアクセスを改善するための有効な代替手段として認識されている。
本研究は, RPMの臨床領域への導入と統合における障壁とファシリテーターに関するステークホルダーからの視点を取り入れたものである。
臨床ワークフローへのRPM統合のためのプロトコルを開発するためには,そのような問題に対処するための方法の特定と,本研究で収集した情報の利用が必要である。
論文 参考訳(メタデータ) (2022-06-14T09:00:08Z) - Personalized Rehabilitation Robotics based on Online Learning Control [62.6606062732021]
本稿では,各ユーザに対して実行時の制御力をパーソナライズ可能な,新しいオンライン学習制御アーキテクチャを提案する。
提案手法を,学習コントローラがパーソナライズされた制御を提供するとともに,安全な相互作用力も得られる実験ユーザスタディで評価した。
論文 参考訳(メタデータ) (2021-10-01T15:28:44Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
この可能性を解き明かすには、大規模な異種データに対して医療AIモデルの性能を測定する体系的な方法が必要である、と私たちは主張する。
MedPerfは、医療分野で機械学習をベンチマークするためのオープンフレームワークです。
論文 参考訳(メタデータ) (2021-09-29T18:09:41Z) - Sustainable Development Through a Mobile Application for a Community
Clinic [0.0]
本稿では, 臨床医が患者の社会経済的限界に対処するためのケアを, テクノロジーとトレーニングの介入によってどのように行うことができるのかを考察する。
本稿では,米国中西部のネブラスカ州オマハ市において,医療資源にアクセスできない人々を対象としたモバイルアプリの実装について考察する。
論文 参考訳(メタデータ) (2021-08-22T16:40:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。