論文の概要: Detecting Near-Duplicate Face Images
- arxiv url: http://arxiv.org/abs/2408.07689v1
- Date: Wed, 14 Aug 2024 17:45:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 12:33:27.413829
- Title: Detecting Near-Duplicate Face Images
- Title(参考訳): 近接二重顔画像の検出
- Authors: Sudipta Banerjee, Arun Ross,
- Abstract要約: 我々は,関係を推定するためのグラフ理論アプローチを用いて,画像フィロジニーツリー(IPT)と呼ばれる木のような構造を構築する。
Image Phylogeny Forests (IPFs) と呼ばれるICTのアンサンブルを作成するために、我々の手法をさらに拡張する。
- 参考スコア(独自算出の注目度): 11.270856740227327
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Near-duplicate images are often generated when applying repeated photometric and geometric transformations that produce imperceptible variants of the original image. Consequently, a deluge of near-duplicates can be circulated online posing copyright infringement concerns. The concerns are more severe when biometric data is altered through such nuanced transformations. In this work, we address the challenge of near-duplicate detection in face images by, firstly, identifying the original image from a set of near-duplicates and, secondly, deducing the relationship between the original image and the near-duplicates. We construct a tree-like structure, called an Image Phylogeny Tree (IPT) using a graph-theoretic approach to estimate the relationship, i.e., determine the sequence in which they have been generated. We further extend our method to create an ensemble of IPTs known as Image Phylogeny Forests (IPFs). We rigorously evaluate our method to demonstrate robustness across other modalities, unseen transformations by latest generative models and IPT configurations, thereby significantly advancing the state-of-the-art performance by 42% on IPF reconstruction accuracy.
- Abstract(参考訳): 近接二重画像は、原画像の知覚不可能な変種を生成するために、繰り返し光度変換と幾何変換を適用する際にしばしば生成される。
結果として、著作権侵害の懸念を訴えて、ほぼ重複した人物がオンラインで拡散される。
このようなニュアンス変換によって生体データを変更すると、懸念はより深刻になる。
本研究では,顔画像における近重複検出の課題について,まず,近重複画像の集合から原画像を識別し,第2に,原画像と近重複画像の関係を推定する。
我々は,関係を推定するグラフ理論的手法を用いて,画像フィロジェニーツリー(IPT)と呼ばれる木のような構造を構築する。
我々はさらにこの手法を拡張して、イメージ・フィロジェニー・フォレスト(IPF)と呼ばれるICTのアンサンブルを作成する。
提案手法は,最新の生成モデルとICT構成による非表示変換により,他のモジュール間のロバスト性を示すために厳密に評価し,IPF再構成精度を42%向上させる。
関連論文リスト
- LTT-GAN: Looking Through Turbulence by Inverting GANs [86.25869403782957]
本稿では,よく訓練されたGANによってカプセル化された視覚的事前情報を利用した最初の乱流緩和手法を提案する。
視覚的先行性に基づき、周期的な文脈距離で復元された画像の同一性を維持することを学ぶことを提案する。
本手法は, 回復した結果の視覚的品質と顔認証精度の両方において, 先行技術よりも優れていた。
論文 参考訳(メタデータ) (2021-12-04T16:42:13Z) - Adversarially Perturbed Wavelet-based Morphed Face Generation [16.98806338782858]
モールフド画像は、顔認識システムを騙して、複数の人を誤って受け入れる。
画像合成が簡単になるにつれて、研究コミュニティの利用可能なデータを拡張することが不可欠である。
両方の手法を用いて、FERET, FRGC, FRLLデータセットから高品質な逆向き摂動を生成する。
論文 参考訳(メタデータ) (2021-11-03T01:18:29Z) - Ensembling with Deep Generative Views [72.70801582346344]
生成モデルは、色やポーズの変化などの現実世界の変動を模倣する人工画像の「ビュー」を合成することができる。
そこで本研究では, 画像分類などの下流解析作業において, 実画像に適用できるかどうかを検討する。
StyleGAN2を再生増強の源として使用し、顔の属性、猫の顔、車を含む分類タスクについてこの設定を調査します。
論文 参考訳(メタデータ) (2021-04-29T17:58:35Z) - Generative and Discriminative Learning for Distorted Image Restoration [22.230017059874445]
Liquifyは、画像の歪みに使用できる画像編集のテクニックである。
本稿では,深層ニューラルネットワークに基づく新しい生成的・識別的学習手法を提案する。
論文 参考訳(メタデータ) (2020-11-11T14:01:29Z) - Learning to Restore a Single Face Image Degraded by Atmospheric
Turbulence using CNNs [93.72048616001064]
このような条件下で撮影された画像は、幾何学的変形と空間のぼかしの組合せに悩まされる。
乱流劣化顔画像の復元問題に対する深層学習に基づく解法を提案する。
論文 参考訳(メタデータ) (2020-07-16T15:25:08Z) - Image-to-image Mapping with Many Domains by Sparse Attribute Transfer [71.28847881318013]
教師なし画像と画像の変換は、2つの領域間の一対のマッピングを、ポイント間の既知のペアワイズ対応なしで学習することで構成される。
現在の慣例は、サイクル一貫性のあるGANでこのタスクにアプローチすることです。
そこで本研究では,ジェネレータを直接,潜在層における単純なスパース変換に制限する代替手法を提案する。
論文 参考訳(メタデータ) (2020-06-23T19:52:23Z) - Exploiting Deep Generative Prior for Versatile Image Restoration and
Manipulation [181.08127307338654]
本研究は, 大規模自然画像に基づいて学習したGAN(Generative Adversarial Network)により, 得られた画像の有効利用方法を示す。
深層生成前駆体(DGP)は、色、パッチ、解像度、様々な劣化した画像の欠落したセマンティクスを復元するための説得力のある結果を提供する。
論文 参考訳(メタデータ) (2020-03-30T17:45:07Z) - Face Phylogeny Tree Using Basis Functions [13.164846772893455]
光度変換は、ほぼ重複した画像の集合を繰り返し生成する顔画像に適用することができる。
デジタル画像法学の文脈では,そのような近接二重化の集合から原像を同定し,それらの関係を導出することが重要である。
本研究では,3種類の基底関数を用いて,近距離画像間の相互関係をモデル化する。
論文 参考訳(メタデータ) (2020-02-21T00:13:21Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
我々は,入力画像の同一性を保った画像を生成するために,微細なカテゴリで画像を変換することを目的としている。
我々は、画像のアイデンティティと非関連要因をアンハングルするために、生成的敵ネットワークに基づくモデルを採用する。
CompCarsとMulti-PIEデータセットの実験では、我々のモデルが生成した画像のアイデンティティを、最先端の画像-画像変換モデルよりもはるかによく保存していることが示された。
論文 参考訳(メタデータ) (2020-01-12T05:26:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。