Algebraic Representations for Faster Predictions in Convolutional Neural Networks
- URL: http://arxiv.org/abs/2408.07815v1
- Date: Wed, 14 Aug 2024 21:10:05 GMT
- Title: Algebraic Representations for Faster Predictions in Convolutional Neural Networks
- Authors: Johnny Joyce, Jan Verschelde,
- Abstract summary: Convolutional neural networks (CNNs) are a popular choice of model for tasks in computer vision.
skip connections may be added to create an easier gradient optimization problem.
We show that arbitrarily complex, trained, linear CNNs with skip connections can be simplified into a single-layer model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNNs) are a popular choice of model for tasks in computer vision. When CNNs are made with many layers, resulting in a deep neural network, skip connections may be added to create an easier gradient optimization problem while retaining model expressiveness. In this paper, we show that arbitrarily complex, trained, linear CNNs with skip connections can be simplified into a single-layer model, resulting in greatly reduced computational requirements during prediction time. We also present a method for training nonlinear models with skip connections that are gradually removed throughout training, giving the benefits of skip connections without requiring computational overhead during during prediction time. These results are demonstrated with practical examples on Residual Networks (ResNet) architecture.
Related papers
- Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
We introduce a novel framework for efficient training of convolutional neural networks (CNNs) for large-scale spatial problems.
We show that a CNN trained on small windows of such signals achieves a nearly performance on much larger windows without retraining.
Our results show that the CNN is able to tackle problems with many hundreds of agents after being trained with fewer than ten.
arXiv Detail & Related papers (2023-07-21T13:51:45Z) - Accelerating SNN Training with Stochastic Parallelizable Spiking Neurons [1.7056768055368383]
Spiking neural networks (SNN) are able to learn features while using less energy, especially on neuromorphic hardware.
Most widely used neuron in deep learning is the temporal and Fire (LIF) neuron.
arXiv Detail & Related papers (2023-06-22T04:25:27Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Rapid training of quantum recurrent neural network [26.087244189340858]
We propose a Quantum Recurrent Neural Network (QRNN) to address these obstacles.
The design of the network is based on the continuous-variable quantum computing paradigm.
Our numerical simulations show that the QRNN converges to optimal weights in fewer epochs than the classical network.
arXiv Detail & Related papers (2022-07-01T12:29:33Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
Current practice requires expensive computational costs in model training for performance prediction.
We propose a novel framework for neural network selection by analyzing the governing dynamics over synaptic connections (edges) during training.
Our framework is built on the fact that back-propagation during neural network training is equivalent to the dynamical evolution of synaptic connections.
arXiv Detail & Related papers (2022-01-11T20:53:15Z) - Training Graph Neural Networks by Graphon Estimation [2.5997274006052544]
We propose to train a graph neural network via resampling from a graphon estimate obtained from the underlying network data.
We show that our approach is competitive with and in many cases outperform the other over-smoothing reducing GNN training methods.
arXiv Detail & Related papers (2021-09-04T19:21:48Z) - ItNet: iterative neural networks with small graphs for accurate and
efficient anytime prediction [1.52292571922932]
In this study, we introduce a class of network models that have a small memory footprint in terms of their computational graphs.
We show state-of-the-art results for semantic segmentation on the CamVid and Cityscapes datasets.
arXiv Detail & Related papers (2021-01-21T15:56:29Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.