論文の概要: The Nah Bandit: Modeling User Non-compliance in Recommendation Systems
- arxiv url: http://arxiv.org/abs/2408.07897v1
- Date: Thu, 15 Aug 2024 03:01:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 15:09:23.243145
- Title: The Nah Bandit: Modeling User Non-compliance in Recommendation Systems
- Title(参考訳): Nah Bandit:レコメンデーションシステムにおけるユーザ非準拠のモデル化
- Authors: Tianyue Zhou, Jung-Hoon Cho, Cathy Wu,
- Abstract要約: Expert with Clustering(EWC)は、推奨オプションと推奨されないオプションの両方からのフィードバックを取り入れた階層的なアプローチで、ユーザの好み学習を加速する。
EWCは教師付き学習と伝統的な文脈的バンディットアプローチの両方を上回ります。
この研究は、より効果的なレコメンデーションシステムのための堅牢なフレームワークを提供する、Nah Banditにおける将来の研究の基礎を築いた。
- 参考スコア(独自算出の注目度): 2.421459418045937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommendation systems now pervade the digital world, ranging from advertising to entertainment. However, it remains challenging to implement effective recommendation systems in the physical world, such as in mobility or health. This work focuses on a key challenge: in the physical world, it is often easy for the user to opt out of taking any recommendation if they are not to her liking, and to fall back to her baseline behavior. It is thus crucial in cyber-physical recommendation systems to operate with an interaction model that is aware of such user behavior, lest the user abandon the recommendations altogether. This paper thus introduces the Nah Bandit, a tongue-in-cheek reference to describe a Bandit problem where users can say `nah' to the recommendation and opt for their preferred option instead. As such, this problem lies in between a typical bandit setup and supervised learning. We model the user non-compliance by parameterizing an anchoring effect of recommendations on users. We then propose the Expert with Clustering (EWC) algorithm, a hierarchical approach that incorporates feedback from both recommended and non-recommended options to accelerate user preference learning. In a recommendation scenario with $N$ users, $T$ rounds per user, and $K$ clusters, EWC achieves a regret bound of $O(N\sqrt{T\log K} + NT)$, achieving superior theoretical performance in the short term compared to LinUCB algorithm. Experimental results also highlight that EWC outperforms both supervised learning and traditional contextual bandit approaches. This advancement reveals that effective use of non-compliance feedback can accelerate preference learning and improve recommendation accuracy. This work lays the foundation for future research in Nah Bandit, providing a robust framework for more effective recommendation systems.
- Abstract(参考訳): 推薦システムは今や、広告からエンターテイメントまで、デジタルの世界に浸透している。
しかし、移動や健康など、物理的な世界で効果的なレコメンデーションシステムを実装することは依然として困難である。
この作業は重要な課題に焦点を絞っている。物理的な世界では、ユーザーが自分の好みに合わない場合は、オプトアウトしてオプトアウトし、ベースラインの行動に戻ることは、しばしば容易である。
したがって、サイバー物理レコメンデーションシステムにおいて、そのようなユーザの振る舞いを認識したインタラクションモデルで操作することが重要であり、ユーザーはレコメンデーションを完全に放棄する。
そこで本稿では,Nah Banditについて紹介する。Nah Banditは,ユーザが推奨語に“nah”と入力して,その代わりに好みのオプションを選択する,というBandit問題を記述する。
そのため、この問題は典型的なバンディット設定と教師あり学習の中間にある。
ユーザに対するレコメンデーションのアンカー効果をパラメータ化することで、ユーザの非コンプライアンスをモデル化する。
次に、推奨オプションと非推奨オプションの両方からのフィードバックを取り入れた階層的アプローチであるExpert with Clustering (EWC)アルゴリズムを提案する。
ユーザあたり$N$、ユーザ毎$T$ラウンド、クラスタ毎$K$のレコメンデーションシナリオでは、EWCは、LinUCBアルゴリズムと比較して短期的に優れた理論的性能を達成するために、$O(N\sqrt{T\log K} + NT)$の後悔の限界を達成している。
実験の結果、EWCは教師付き学習と伝統的な文脈的バンディットアプローチの両方に優れていた。
この進歩は、非コンプライアンスフィードバックを効果的に活用することで、嗜好学習を加速し、レコメンデーション精度を向上させることを明らかにする。
この研究は、より効果的なレコメンデーションシステムのための堅牢なフレームワークを提供する、Nah Banditにおける将来の研究の基礎を築いた。
関連論文リスト
- Treatment Effect Estimation for User Interest Exploration on Recommender Systems [10.05609996672672]
本稿では,トップN推薦を処理最適化問題とみなすUpliftモデルに基づくRecommenderフレームワークを提案する。
UpliftRecは、観察ユーザフィードバックを用いて、異なるカテゴリの露出比で、クリックスルーレート(CTR)という治療効果を推定する。
UpliftRecはグループレベルの治療効果を計算し、高いCTR報酬でユーザの隠れた関心を発見する。
論文 参考訳(メタデータ) (2024-05-14T13:22:33Z) - Shadow-Free Membership Inference Attacks: Recommender Systems Are More Vulnerable Than You Thought [43.490918008927]
本稿では,ユーザによる会員推論の推奨を直接活用するシャドウフリーMIAを提案する。
我々の攻撃は、ベースラインよりも偽陽性率の低い攻撃精度をはるかに向上させる。
論文 参考訳(メタデータ) (2024-05-11T13:52:22Z) - Expert with Clustering: Hierarchical Online Preference Learning Framework [4.05836962263239]
Expert with Clustering (EWC)は、クラスタリングのテクニックと予測を専門家のアドバイスと統合した階層的なコンテキスト的バンディットフレームワークである。
EWCはLinUCBベースラインと比較して後悔を27.57%減らすことができる。
論文 参考訳(メタデータ) (2024-01-26T18:44:49Z) - Incentive-Aware Recommender Systems in Two-Sided Markets [49.692453629365204]
最適性能を達成しつつエージェントのインセンティブと整合する新しいレコメンデータシステムを提案する。
我々のフレームワークは、このインセンティブを意識したシステムを、両側市場におけるマルチエージェントバンディット問題としてモデル化する。
どちらのアルゴリズムも、エージェントが過剰な露出から保護する、ポストフェアネス基準を満たす。
論文 参考訳(メタデータ) (2022-11-23T22:20:12Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - Modeling Attrition in Recommender Systems with Departing Bandits [84.85560764274399]
政策に依存した地平線を捉えた新しいマルチアームバンディット構成を提案する。
まず、全てのユーザが同じタイプを共有しているケースに対処し、最近の UCB ベースのアルゴリズムが最適であることを実証する。
次に、ユーザが2つのタイプに分けられる、より困難なケースを前進させます。
論文 参考訳(メタデータ) (2022-03-25T02:30:54Z) - Learning the Optimal Recommendation from Explorative Users [38.332330484187395]
本研究では,レコメンデータシステムとユーザ間の逐次的インタラクションについて検討する。
効率的なシステム学習は依然として可能であるが、より困難であることを示す。
論文 参考訳(メタデータ) (2021-10-06T21:01:18Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
ユーザのアクティビティのレベルに応じて異なるグループのユーザを分析し、異なるグループ間での推奨パフォーマンスにバイアスが存在することを確認する。
不活性なユーザは、不活性なユーザのためのトレーニングデータが不十分なため、不満足なレコメンデーションを受けやすい可能性がある。
本稿では、知識グラフに対する説明可能な推奨という文脈で、この問題を緩和するために再ランク付けすることで、公平性に制約されたアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-03T05:04:38Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。