論文の概要: Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation
- arxiv url: http://arxiv.org/abs/2408.07947v3
- Date: Wed, 11 Sep 2024 04:02:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 20:22:30.364986
- Title: Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation
- Title(参考訳): VHR SARの光画像変換のための条件付きブラウン橋拡散モデル
- Authors: Seon-Hoon Kim, Dae-Won Chung,
- Abstract要約: 本稿では,Brownian Bridge Diffusion Model(BBDM)に基づく条件付き画像から画像への変換手法を提案する。
我々は、MSAWデータセット、ペアSAR、0.5m Very-High-Resolution (VHR) の光学画像収集に関する総合的な実験を行った。
- 参考スコア(独自算出の注目度): 5.578820789388206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic Aperture Radar (SAR) imaging technology provides the unique advantage of being able to collect data regardless of weather conditions and time. However, SAR images exhibit complex backscatter patterns and speckle noise, which necessitate expertise for interpretation. Research on translating SAR images into optical-like representations has been conducted to aid the interpretation of SAR data. Nevertheless, existing studies have predominantly utilized low-resolution satellite imagery datasets and have largely been based on Generative Adversarial Network (GAN) which are known for their training instability and low fidelity. To overcome these limitations of low-resolution data usage and GAN-based approaches, this paper introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM). We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR). The experimental results indicate that our method surpasses both the Conditional Diffusion Models (CDMs) and the GAN-based models in diverse perceptual quality metrics.
- Abstract(参考訳): 合成開口レーダ(SAR)イメージング技術は、気象条件や時間に関係なくデータを収集できるというユニークな利点を提供する。
しかし、SAR画像は複雑な後方散乱パターンとスペックルノイズを示し、解釈の専門知識を必要とする。
SAR画像の光学的表現への変換に関する研究は,SARデータの解釈を支援するために行われている。
それにもかかわらず、既存の研究は、主に低解像度の衛星画像データセットを利用しており、そのトレーニング不安定性と低忠実さで知られているGAN(Generative Adversarial Network)に基づいている。
このような低解像度データ利用の限界とGANに基づくアプローチを克服するために,Brownian Bridge Diffusion Model (BBDM) に基づく条件付き画像-画像変換手法を提案する。
我々は、MSAWデータセット、ペアSAR、0.5m Very-High-Resolution (VHR) の光学画像収集に関する総合的な実験を行った。
実験結果から,本手法は条件拡散モデル (CDM) とGANベースモデルの両方を,多様な知覚的品質指標で上回ることがわかった。
関連論文リスト
- C-DiffSET: Leveraging Latent Diffusion for SAR-to-EO Image Translation with Confidence-Guided Reliable Object Generation [23.63992950769041]
C-DiffSETは、訓練済みの遅延拡散モデル(LDM)を自然画像で広く訓練したフレームワークである。
顕著なことに、事前訓練されたVAEエンコーダは、SAR入力のノイズレベルが異なる場合でも、同じ潜時空間でSARとEOの画像を整列する。
論文 参考訳(メタデータ) (2024-11-16T12:28:40Z) - Electrooptical Image Synthesis from SAR Imagery Using Generative Adversarial Networks [0.0]
本研究は,SAR画像とEO画像のギャップを埋めることでリモートセンシングの分野に寄与する。
その結果,解釈可能性が大きく向上し,EO画像に精通したアナリストがSARデータにアクセスしやすくなった。
本研究は,SAR画像とEO画像のギャップを埋めることでリモートセンシングの分野に寄与し,データ解釈を向上するための新しいツールを提供する。
論文 参考訳(メタデータ) (2024-09-07T14:31:46Z) - SAR to Optical Image Translation with Color Supervised Diffusion Model [5.234109158596138]
本稿では,SAR画像をより分かりやすい光学画像に変換するために,革新的な生成モデルを提案する。
サンプリングプロセスでは,SARイメージを条件付きガイドとして使用し,カラーシフト問題に対処するために色管理を統合する。
論文 参考訳(メタデータ) (2024-07-24T01:11:28Z) - SAR Image Synthesis with Diffusion Models [0.0]
拡散モデル(DM)は、合成データを生成する一般的な方法となっている。
本研究では,拡散確率モデル (DDPM) をSAR領域に適応させる特定の種類のDMについて述べる。
DDPMは,SAR画像生成のための最先端のGAN法よりも質的に,定量的に優れていることを示す。
論文 参考訳(メタデータ) (2024-05-13T14:21:18Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
本稿では, 複雑な関係をモデル化する能力を示す, 最先端(SOTA)生成モデルを提案する。
生成した拡張画像とノイズを含む画像を利用する新しい拡散復元ネットワークを考案する。
2つの視覚評価枝は、得られた高レベル特徴情報を包括的に解析するように設計されている。
論文 参考訳(メタデータ) (2024-02-22T09:39:46Z) - SAR Despeckling via Regional Denoising Diffusion Probabilistic Model [6.154796320245652]
生成モデルに基づく領域分割拡散確率モデル(R-DDPM)
本稿では, 生成モデルに基づく領域分割拡散確率モデル (R-DDPM) を提案する。
論文 参考訳(メタデータ) (2024-01-06T04:34:46Z) - Diffusion Models for Interferometric Satellite Aperture Radar [73.01013149014865]
確率拡散モデル (Probabilistic Diffusion Models, PDMs) は、最近、非常に有望な生成モデルのクラスとして登場した。
ここでは、PDMを活用して、レーダーベースの衛星画像データセットを複数生成する。
PDMは複雑で現実的な構造を持つ画像を生成することに成功したが、サンプリング時間は依然として問題である。
論文 参考訳(メタデータ) (2023-08-31T16:26:17Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
本稿では,ACDMSRと呼ばれる拡散モデルに基づく超解像法を提案する。
提案手法は, 決定論的反復分解過程を通じて超解像を行うために, 標準拡散モデルに適応する。
提案手法は,低解像度画像に対してより視覚的に現実的な表現を生成し,現実的なシナリオにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2023-07-03T06:49:04Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Perception Consistency Ultrasound Image Super-resolution via
Self-supervised CycleGAN [63.49373689654419]
自己スーパービジョンとサイクル生成対向ネットワーク(CycleGAN)に基づく新しい知覚整合超音波画像超解像法を提案する。
まず,検査用超音波LR画像のHR父子とLR子を画像強調により生成する。
次に、LR-SR-LRとHR-LR-SRのサイクル損失と判別器の対角特性をフル活用して、より知覚的に一貫性のあるSR結果を生成する。
論文 参考訳(メタデータ) (2020-12-28T08:24:04Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。