Imaging coupled vibrational, rotational, and electronic wave packet dynamics in a triatomic molecule
- URL: http://arxiv.org/abs/2408.07958v2
- Date: Wed, 9 Oct 2024 20:54:21 GMT
- Title: Imaging coupled vibrational, rotational, and electronic wave packet dynamics in a triatomic molecule
- Authors: Huynh Van Sa Lam, Van-Hung Hoang, Anbu Selvam Venkatachalam, Surjendu Bhattacharyya, Keyu Chen, Sina Jacob, Sanduni Kudagama, Tu Thanh Nguyen, Daniel Rolles, Uwe Thumm, Artem Rudenko, Vinod Kumarappan,
- Abstract summary: We show how the interplay between vibrational, rotational, and electronic degrees of freedom governs the evolution of molecular wave packets.
Our results suggest that multi-coincident CEI represents an efficient experimental tool for characterizing coupled electronic and nuclear motion in polyatomic molecules.
- Score: 3.7196648549871205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular dynamics triggered by interaction with light often involve the excitation of several electronic, vibrational, and rotational states. Characterizing the resulting coupled electronic and nuclear wave packet motion represents a severe challenge, even for small polyatomic systems. In this Letter, we demonstrate how the interplay between vibrational, rotational, and electronic degrees of freedom governs the evolution of molecular wave packets in the low-lying states of strong-field-ionized sulfur dioxide. Using time-resolved Coulomb explosion imaging (CEI) in combination with quantum mechanical wave packet simulations, we directly map bending vibrations of the molecule, show how the vibrational wave packet is influenced by molecular alignment, and elucidate the role of the coupling between the two lowest electronic states of the cation. A conical intersection between these states couples the bending and asymmetric stretching coordinates, which is clearly reflected in the correlated fragment momenta. Our results suggest that multi-coincident CEI represents an efficient experimental tool for characterizing coupled electronic and nuclear motion in polyatomic molecules.
Related papers
- Direct Observation of Entangled Electronic-Nuclear Wave Packets [0.0]
We present momentum resolved covariance measurements of entangled electronic-nuclear wave packets created and probed with octave spanning phaselocked ultrafast pulses.
We launch vibrational wave packets on multiple electronic states via multi-photon absorption, and probe these wave packets via strong field double ionization using a second phaselocked pulse.
arXiv Detail & Related papers (2023-11-17T15:39:01Z) - Spin- and Momentum-Correlated Atom Pairs Mediated by Photon Exchange and
Seeded by Vacuum Fluctuations [0.0]
We experimentally demonstrate a mechanism for generating pairs of atoms in well-defined spin and momentum modes.
We observe a collectively enhanced production of pairs and probe interspin correlations in momentum space.
Our results offer promising prospects for quantum-enhanced interferometry and quantum simulation experiments.
arXiv Detail & Related papers (2023-03-20T17:59:03Z) - Molecular Dynamics in Rydberg Tweezer Arrays: Spin-Phonon Entanglement
and Jahn-Teller Effect [0.0]
Atoms confined in optical tweezer arrays constitute a platform for the implementation of quantum computers and simulators.
We explore electrostatic dipolar interactions that emerge, when two atoms are simultaneously excited to high-lying electronic states, so-called Rydberg states.
This highlights the potential of Rydberg tweezer arrays for the study of molecular phenomena at exaggerated length scales.
arXiv Detail & Related papers (2023-03-15T18:32:42Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Electronic decay process spectra including nuclear degrees of freedom [49.1574468325115]
We explore the ultra-rapid electronic motion spanning attoseconds to femtoseconds, demonstrating that it is equally integral and relevant to the discipline.
The advent of ultrashort attosecond pulse technology has revolutionized our ability to directly observe electronic rearrangements in atoms and molecules.
arXiv Detail & Related papers (2021-02-10T16:51:48Z) - The Shape of the Electric Dipole Function Determines the Sub-Picosecond
Dynamics of Anharmonic Vibrational Polaritons [0.0]
We describe for the first time the essential role of permanent dipole moments in the femtosecond dynamics of vibrational polariton wavepackets.
We propose a non-adiabatic state preparation scheme to generate vibrational polaritons using nanoscale infrared antennas and UV-vis photochemistry or electron tunneling.
arXiv Detail & Related papers (2020-03-17T15:55:09Z) - Molecule-photon interactions in phononic environments [0.0879626117219674]
Liquid quantum optical systems can interface photons, electronic degrees of freedom, localized mechanical vibrations and phonons.
In particular, the strong vibronic interaction between electrons and nuclear motion in a molecule resembles the optomechanical radiation pressure Hamiltonian.
We take here an open quantum system approach to the non-equilibrium dynamics of molecules embedded in a crystal.
arXiv Detail & Related papers (2019-12-05T15:11:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.