論文の概要: Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2408.08023v1
- Date: Thu, 15 Aug 2024 08:43:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 14:26:13.371605
- Title: Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks
- Title(参考訳): 短時間の不変性に基づく畳み込みニューラルネットワークを用いた時系列データからの因果発見
- Authors: Rujia Shen, Boran Wang, Chao Zhao, Yi Guan, Jingchi Jiang,
- Abstract要約: 時系列データによる因果発見は、スライス内(同時)とスライス間(時差)の両方の因果関係を捉えることを目的としている。
我々は, textbfShort-textbfTerm textbfInvariance に着目した勾配に基づく因果探索手法 STIC を提案する。
- 参考スコア(独自算出の注目度): 12.784885649573994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal discovery from time-series data aims to capture both intra-slice (contemporaneous) and inter-slice (time-lagged) causality between variables within the temporal chain, which is crucial for various scientific disciplines. Compared to causal discovery from non-time-series data, causal discovery from time-series data necessitates more serialized samples with a larger amount of observed time steps. To address the challenges, we propose a novel gradient-based causal discovery approach STIC, which focuses on \textbf{S}hort-\textbf{T}erm \textbf{I}nvariance using \textbf{C}onvolutional neural networks to uncover the causal relationships from time-series data. Specifically, STIC leverages both the short-term time and mechanism invariance of causality within each window observation, which possesses the property of independence, to enhance sample efficiency. Furthermore, we construct two causal convolution kernels, which correspond to the short-term time and mechanism invariance respectively, to estimate the window causal graph. To demonstrate the necessity of convolutional neural networks for causal discovery from time-series data, we theoretically derive the equivalence between convolution and the underlying generative principle of time-series data under the assumption that the additive noise model is identifiable. Experimental evaluations conducted on both synthetic and FMRI benchmark datasets demonstrate that our STIC outperforms baselines significantly and achieves the state-of-the-art performance, particularly when the datasets contain a limited number of observed time steps. Code is available at \url{https://github.com/HITshenrj/STIC}.
- Abstract(参考訳): 時系列データによる因果発見は、時間連鎖内の変数間のスライス内(同時)とインタースライス間(同時)の因果関係を捉えることを目的としており、これは様々な科学分野において不可欠である。
非時系列データからの因果的発見と比較して、時系列データからの因果的発見は、より大きな観測時間ステップでよりシリアライズされたサンプルを必要とする。
これらの課題に対処するため、我々は、時系列データから因果関係を明らかにするために、新しい勾配に基づく因果発見アプローチ STIC を提案し、これは \textbf{S}hort-\textbf{T}erm \textbf{I}nvariance に着目している。
具体的には、STICは、独立性を持つ各ウィンドウ観察における因果関係の短期的時間と機構的不変性の両方を活用して、サンプル効率を向上させる。
さらに、窓因果グラフを推定するために、短期時間とメカニズムのばらつきに対応する2つの因果畳み込みカーネルを構築した。
時系列データから因果的発見を行うための畳み込みニューラルネットワークの必要性を示すため,加算雑音モデルが同定可能であるという仮定の下で,畳み込みと基本生成原理との等価性を理論的に導出する。
合成およびFMRIベンチマークを用いて行った実験により、STICはベースラインを著しく上回り、特に観測時間ステップが限られている場合、最先端の性能を達成することが示された。
コードは \url{https://github.com/HITshenrj/STIC} で入手できる。
関連論文リスト
- On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction [27.521188262343596]
我々はTHGNN(Temporal and Heterogeneous Graph Neural Networks)という新しいモデルを導入する。
THGNNは、隣接するノードからの履歴データを集約し、センサーデータのストリーム内の時間的ダイナミクスと空間的相関を正確にキャプチャする。
包括的実験により,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-05-07T14:08:57Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - CausalTime: Realistically Generated Time-series for Benchmarking of
Causal Discovery [14.092834149864514]
本研究では,実データに非常によく似た時系列を生成するためのCausalTimeパイプラインを紹介する。
パイプラインは、特定のシナリオにおける実際の観察から始まり、一致するベンチマークデータセットを生成する。
実験では, 定性的, 定量的な実験を行い, 既存のTSCDアルゴリズムのベンチマークを行った。
論文 参考訳(メタデータ) (2023-10-03T02:29:19Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - CUTS: Neural Causal Discovery from Irregular Time-Series Data [27.06531262632836]
時系列データからの因果発見は、機械学習における中心的なタスクである。
本稿では,ニューラルグランガー因果探索アルゴリズムであるCUTSについて述べる。
提案手法は,非理想的な観測を行う実アプリケーションに因果発見を適用するための有望なステップとなる。
論文 参考訳(メタデータ) (2023-02-15T04:16:34Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
従来の手法では、データの時系列ダイナミクスと、異なるセンサーの特徴の関連性の両方をめったに利用していない、と我々は主張する。
我々はDynImpと呼ばれるモデルを提案し、特徴軸に沿って近接する隣人と異なる時間点の欠如を扱う。
本手法は, 関連センサのマルチモーダル性特性を活かし, 履歴時系列のダイナミックスから学習し, 極端に欠落した状態でデータを再構築することができることを示す。
論文 参考訳(メタデータ) (2022-09-26T21:59:14Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - Amortized Causal Discovery: Learning to Infer Causal Graphs from
Time-Series Data [63.15776078733762]
本稿では,時系列データから因果関係を推定する新しいフレームワークであるAmortized Causal Discoveryを提案する。
本研究では,本手法が変分モデルとして実装され,因果発見性能が大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:59:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。