論文の概要: Semantic Capability Model for the Simulation of Manufacturing Processes
- arxiv url: http://arxiv.org/abs/2408.08048v1
- Date: Thu, 15 Aug 2024 09:28:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 14:26:13.337773
- Title: Semantic Capability Model for the Simulation of Manufacturing Processes
- Title(参考訳): 製造プロセスシミュレーションのための意味的能力モデル
- Authors: Jonathan Reif, Tom Jeleniewski, Aljosha Köcher, Tim Frerich, Felix Gehlhoff, Alexander Fay,
- Abstract要約: シミュレーションは製造工程の検査の機会を提供する。
異なるシミュレーションの組み合わせは、あるシミュレーションの出力が別のシミュレーションの入力パラメータとして機能し、結果として一連のシミュレーションとなるときに必要である。
シミュレーション、特定の知識を生成する能力、それぞれの品質基準を表現した情報モデルが導入された。
- 参考スコア(独自算出の注目度): 38.69817856379812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulations offer opportunities in the examination of manufacturing processes. They represent various aspects of the production process and the associated production systems. However, often a single simulation does not suffice to provide a comprehensive understanding of specific process settings. Instead, a combination of different simulations is necessary when the outputs of one simulation serve as the input parameters for another, resulting in a sequence of simulations. Manual planning of simulation sequences is a demanding task that requires careful evaluation of factors like time, cost, and result quality to choose the best simulation scenario for a given inquiry. In this paper, an information model is introduced, which represents simulations, their capabilities to generate certain knowledge, and their respective quality criteria. The information model is designed to provide the foundation for automatically generating simulation sequences. The model is implemented as an extendable and adaptable ontology. It utilizes Ontology Design Patterns based on established industrial standards to enhance interoperability and reusability. To demonstrate the practicality of this information model, an application example is provided. This example serves to illustrate the model's capacity in a real-world context, thereby validating its utility and potential for future applications.
- Abstract(参考訳): シミュレーションは製造工程の検査の機会を提供する。
これらは生産プロセスと関連する生産システムの様々な側面を表す。
しかし、単一のシミュレーションが特定のプロセス設定の包括的な理解を提供するのに十分ではないことが多い。
代わりに、あるシミュレーションの出力が別のシミュレーションの入力パラメータとして機能し、結果として一連のシミュレーションを行う場合、異なるシミュレーションの組み合わせが必要である。
シミュレーションシーケンスのマニュアル計画は、与えられた調査に最適なシミュレーションシナリオを選択するために、時間、コスト、結果品質などの要因を慎重に評価する必要がある要求のあるタスクである。
本稿では,シミュレーション,特定の知識を生成する能力,各品質基準を表現した情報モデルを提案する。
情報モデルは、シミュレーションシーケンスを自動生成する基盤を提供するように設計されている。
このモデルは拡張可能で適応可能なオントロジーとして実装されている。
オントロジーデザインパターンを確立された工業標準に基づいて利用し、相互運用性と再利用性を高める。
この情報モデルの実用性を実証するために、アプリケーション例を提供する。
この例は、実世界のコンテキストにおけるモデルの能力を説明するのに役立つ。
関連論文リスト
- FactorSim: Generative Simulation via Factorized Representation [14.849320460718591]
本稿では,エージェントの訓練に使用できる言語入力から,コード中のフルシミュレーションを生成するFACTORSIMを提案する。
評価のために、我々は、強化学習環境におけるゼロショット転送を容易にするため、生成したシミュレーションコードの精度と有効性を評価できる生成シミュレーションベンチマークを導入する。
その結果、FACTORSIMは、即時アライメント(例えば、精度)、ゼロショット転送能力、人的評価に関するシミュレーションを生成する上で、既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-09-26T09:00:30Z) - A Benchmark Time Series Dataset for Semiconductor Fabrication Manufacturing Constructed using Component-based Discrete-Event Simulation Models [0.0]
この研究はIntel半導体製造工場のベンチマークモデルに基づいている。
時系列データセットは離散時間軌道を用いて構築される。
データセットは、機械学習コミュニティで行動分析に利用することもできる。
論文 参考訳(メタデータ) (2024-08-17T23:05:47Z) - Learning to Simulate: Generative Metamodeling via Quantile Regression [2.2518304637809714]
我々は「シミュレーターの高速シミュレータ」を構築することを目的とした、生成メタモデリングと呼ばれる新しいメタモデリング概念を提案する。
一度構築すると、生成メタモデルは入力が特定されるとすぐに大量のランダム出力を生成することができる。
本稿では,QRGMM(quantile-regression-based generative metamodeling)という新しいアルゴリズムを提案し,その収束率と収束率について検討する。
論文 参考訳(メタデータ) (2023-11-29T16:46:24Z) - Identifying Simulation Model Through Alternative Techniques for a
Medical Device Assembly Process [0.0]
本稿では,シミュレーションモデルの同定と近似のための2つの異なるアプローチについて検討する。
私たちのゴールは、スナッププロセスを正確に表現し、多様なシナリオに対応できる適応可能なモデルを作ることです。
論文 参考訳(メタデータ) (2023-09-26T17:40:29Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
本調査は,モデリングとシミュレーションの分野における最近のトレンドを包括的に概観することを目的としている。
まずは、シミュレーターを実装するフレームワークの開発の背後にあるモチベーションから始めます。
我々は,既存のシミュレータの機能,近似,産業的有効性に基づいて,新しい一貫した一貫した分類を行う。
論文 参考訳(メタデータ) (2022-06-22T19:33:21Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
モデル最適化のための半自動支援を実現するプロセスマイニング手法を提案する。
所望の粒度で生モデルを抽象化するモデル単純化手法が提案されている。
医療分野の異なるアプリケーションから得られた3つのデータセットを用いて、技術的ソリューションの能力を実証することを目的としている。
論文 参考訳(メタデータ) (2022-06-10T16:20:59Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
本稿では,シミュレーションで学習したモデルやポリシーを現実世界に伝達することを目的とした,様々なアルゴリズムの研究のためのベンチマークとフレームワークを提案する。
我々は、様々なアルゴリズムの性能に関する洞察を特徴付け、提供するために、広く知られたシミュレーション環境の実験を行う。
我々の分析は、この分野の実践者にとって有用であり、sim-to-realアルゴリズムの動作と主特性について、より深い選択をすることができる。
論文 参考訳(メタデータ) (2020-11-17T22:24:26Z) - Simulation of an Elevator Group Control Using Generative Adversarial
Networks and Related AI Tools [0.6481500397175589]
Generative Adversarial Networks (GAN) は、様々なタスクのための新しいデータを生成する強力なツールである。
本稿では,シミュレーションにおけるGANの適用性について検討する。
論文 参考訳(メタデータ) (2020-09-03T14:22:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。