論文の概要: A Multi-task Adversarial Attack Against Face Authentication
- arxiv url: http://arxiv.org/abs/2408.08205v1
- Date: Thu, 15 Aug 2024 15:13:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 13:36:33.511852
- Title: A Multi-task Adversarial Attack Against Face Authentication
- Title(参考訳): 顔認証に対するマルチタスク対応攻撃
- Authors: Hanrui Wang, Shuo Wang, Cunjian Chen, Massimo Tistarelli, Zhe Jin,
- Abstract要約: 本稿では,複数のユーザやシステムに対して適応可能なMTADVと呼ばれるマルチタスク逆攻撃アルゴリズムを提案する。
MTADVはLFW、CelebA、CelebA-HQなど、さまざまな顔データセットに対して有効である。
- 参考スコア(独自算出の注目度): 16.86448076317697
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Deep-learning-based identity management systems, such as face authentication systems, are vulnerable to adversarial attacks. However, existing attacks are typically designed for single-task purposes, which means they are tailored to exploit vulnerabilities unique to the individual target rather than being adaptable for multiple users or systems. This limitation makes them unsuitable for certain attack scenarios, such as morphing, universal, transferable, and counter attacks. In this paper, we propose a multi-task adversarial attack algorithm called MTADV that are adaptable for multiple users or systems. By interpreting these scenarios as multi-task attacks, MTADV is applicable to both single- and multi-task attacks, and feasible in the white- and gray-box settings. Furthermore, MTADV is effective against various face datasets, including LFW, CelebA, and CelebA-HQ, and can work with different deep learning models, such as FaceNet, InsightFace, and CurricularFace. Importantly, MTADV retains its feasibility as a single-task attack targeting a single user/system. To the best of our knowledge, MTADV is the first adversarial attack method that can target all of the aforementioned scenarios in one algorithm.
- Abstract(参考訳): 顔認識システムのようなディープラーニングベースのアイデンティティ管理システムは、敵の攻撃に対して脆弱である。
しかし、既存の攻撃はシングルタスク用に設計されているため、複数のユーザやシステムに適応するのではなく、個々のターゲット固有の脆弱性を利用するように調整されている。
この制限は、モーフィング、ユニバーサル、転送可能、カウンター攻撃のような特定の攻撃シナリオには適さない。
本稿では,複数のユーザやシステムに対して適応可能なMTADVと呼ばれるマルチタスク逆攻撃アルゴリズムを提案する。
これらのシナリオをマルチタスク攻撃と解釈することで、MTADVはシングルタスク攻撃とマルチタスク攻撃の両方に適用でき、ホワイトボックスとグレイボックスの設定で実現可能である。
さらに、MTADVはLFW、CelebA、CelebA-HQなどのさまざまな顔データセットに対して有効であり、FaceNet、InsightFace、CurricularFaceといったさまざまなディープラーニングモデルで動作することができる。
重要な点として、MTADVは単一ユーザ/システムをターゲットにしたシングルタスク攻撃として実現可能性を維持している。
我々の知る限りでは、MTADVは上記のシナリオを1つのアルゴリズムで対象とする最初の敵攻撃法である。
関連論文リスト
- Derail Yourself: Multi-turn LLM Jailbreak Attack through Self-discovered Clues [88.96201324719205]
本研究では,マルチターンインタラクションにおけるLarge Language Models(LLM)の安全性の脆弱性を明らかにする。
本稿ではアクターネットワーク理論に触発された新しいマルチターン攻撃手法であるActorAttackを紹介する。
論文 参考訳(メタデータ) (2024-10-14T16:41:49Z) - Adversarial Robustness for Visual Grounding of Multimodal Large Language Models [49.71757071535619]
MLLM(Multi-modal Large Language Models)は近年,様々な視覚言語タスクのパフォーマンス向上を実現している。
MLLMでは、視覚的グラウンドリングの対角的堅牢性は未発見のままである。
本稿では,次の3つの攻撃パラダイムを提案する。
論文 参考訳(メタデータ) (2024-05-16T10:54:26Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - PRAT: PRofiling Adversarial aTtacks [52.693011665938734]
PRofiling Adversarial aTacks (PRAT) の新たな問題点について紹介する。
敵対的な例として、PRATの目的は、それを生成するのに使用される攻撃を特定することである。
AIDを用いてPRATの目的のための新しいフレームワークを考案する。
論文 参考訳(メタデータ) (2023-09-20T07:42:51Z) - A Review of Adversarial Attacks in Computer Vision [16.619382559756087]
敵対的攻撃は人間の目では見えないが、深層学習の誤分類につながる可能性がある。
敵攻撃は、攻撃者がモデルのパラメータと勾配を知っているホワイトボックス攻撃とブラックボックス攻撃に分けられ、後者は攻撃者がモデルの入力と出力しか取得できない。
論文 参考訳(メタデータ) (2023-08-15T09:43:10Z) - Multi-Task Models Adversarial Attacks [25.834775498006657]
マルチタスク学習はマルチタスクモデルとして知られる特異モデルを開発し、複数のタスクを同時に実行する。
シングルタスクモデルのセキュリティは徹底的に研究されているが、マルチタスクモデルはいくつかの重要なセキュリティ問題を引き起こす。
本稿では,これらの質問に対して,詳細な分析と厳密な実験を通じて対処する。
論文 参考訳(メタデータ) (2023-05-20T03:07:43Z) - Can Adversarial Examples Be Parsed to Reveal Victim Model Information? [62.814751479749695]
本研究では,データ固有の敵インスタンスから,データに依存しない被害者モデル(VM)情報を推測できるかどうかを問う。
我々は,135件の被害者モデルから生成された7種類の攻撃に対して,敵攻撃のデータセットを収集する。
単純な教師付きモデル解析ネットワーク(MPN)は、見えない敵攻撃からVM属性を推測できることを示す。
論文 参考訳(メタデータ) (2023-03-13T21:21:49Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - Multi-Task Adversarial Attack [3.412750324146571]
MTA(Multi-Task adversarial Attack)は、複数のタスクの敵例を効率的に作成できる統合されたフレームワークである。
MTAは、全てのタスクのための共有エンコーダと複数のタスク固有のデコーダからなる逆転摂動のジェネレータを使用する。
共有エンコーダのおかげで、MTAはストレージコストを削減し、複数のタスクを同時に攻撃する際の推論を高速化する。
論文 参考訳(メタデータ) (2020-11-19T13:56:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。