WaterSplatting: Fast Underwater 3D Scene Reconstruction Using Gaussian Splatting
- URL: http://arxiv.org/abs/2408.08206v1
- Date: Thu, 15 Aug 2024 15:16:49 GMT
- Title: WaterSplatting: Fast Underwater 3D Scene Reconstruction Using Gaussian Splatting
- Authors: Huapeng Li, Wenxuan Song, Tianao Xu, Alexandre Elsig, Jonas Kulhanek,
- Abstract summary: We propose a novel approach that fuses volumetric rendering with 3DGS to handle underwater data effectively.
Our method outperforms state-of-the-art NeRF-based methods in rendering quality on the underwater SeaThru-NeRF dataset.
- Score: 39.58317527488534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The underwater 3D scene reconstruction is a challenging, yet interesting problem with applications ranging from naval robots to VR experiences. The problem was successfully tackled by fully volumetric NeRF-based methods which can model both the geometry and the medium (water). Unfortunately, these methods are slow to train and do not offer real-time rendering. More recently, 3D Gaussian Splatting (3DGS) method offered a fast alternative to NeRFs. However, because it is an explicit method that renders only the geometry, it cannot render the medium and is therefore unsuited for underwater reconstruction. Therefore, we propose a novel approach that fuses volumetric rendering with 3DGS to handle underwater data effectively. Our method employs 3DGS for explicit geometry representation and a separate volumetric field (queried once per pixel) for capturing the scattering medium. This dual representation further allows the restoration of the scenes by removing the scattering medium. Our method outperforms state-of-the-art NeRF-based methods in rendering quality on the underwater SeaThru-NeRF dataset. Furthermore, it does so while offering real-time rendering performance, addressing the efficiency limitations of existing methods. Web: https://water-splatting.github.io
Related papers
- 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes [87.01284850604495]
We introduce 3D Convexting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multiview images.
3DCS achieves superior performance over 3DGS on benchmarks such as MipNeizer, Tanks and Temples, and Deep Blending.
Our results highlight the potential of 3D Convexting to become the new standard for high-quality scene reconstruction.
arXiv Detail & Related papers (2024-11-22T14:31:39Z) - Aquatic-GS: A Hybrid 3D Representation for Underwater Scenes [6.549998173302729]
We propose Aquatic-GS, a hybrid 3D representation approach for underwater scenes that effectively represents both the objects and the water medium.
Specifically, we construct a Neural Water Field (NWF) to implicitly model the water parameters, while extending the latest 3D Gaussian Splatting (3DGS) to model the objects explicitly.
Both components are integrated through a physics-based underwater image formation model to represent complex underwater scenes.
arXiv Detail & Related papers (2024-10-31T22:24:56Z) - SpotlessSplats: Ignoring Distractors in 3D Gaussian Splatting [44.42317312908314]
3D Gaussian Splatting (3DGS) is a promising technique for 3D reconstruction, offering efficient training and rendering speeds.
Current methods require highly controlled environments to meet the inter-view consistency assumption of 3DGS.
We present SpotLessSplats, an approach that leverages pre-trained and general-purpose features coupled with robust optimization to effectively ignore transient distractors.
arXiv Detail & Related papers (2024-06-28T17:07:11Z) - Mani-GS: Gaussian Splatting Manipulation with Triangular Mesh [44.57625460339714]
We propose a triangular mesh to manipulate 3DGS directly with self-adaptation.
Our approach is capable of handling large deformations, local manipulations, and soft body simulations while keeping high-fidelity rendering.
arXiv Detail & Related papers (2024-05-28T04:13:21Z) - Bootstrap 3D Reconstructed Scenes from 3D Gaussian Splatting [10.06208115191838]
We present a bootstrapping method to enhance the rendering of novel views using trained 3D-GS.
Our results indicate that bootstrapping effectively reduces artifacts, as well as clear enhancements on the evaluation metrics.
arXiv Detail & Related papers (2024-04-29T12:57:05Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields [54.482261428543985]
Methods that use Neural Radiance fields are versatile for traditional tasks such as novel view synthesis.
3D Gaussian splatting has shown state-of-the-art performance on real-time radiance field rendering.
We propose architectural and training changes to efficiently avert this problem.
arXiv Detail & Related papers (2023-12-06T00:46:30Z) - NeRF-Det: Learning Geometry-Aware Volumetric Representation for
Multi-View 3D Object Detection [65.02633277884911]
We present NeRF-Det, a novel method for indoor 3D detection with posed RGB images as input.
Our method makes use of NeRF in an end-to-end manner to explicitly estimate 3D geometry, thereby improving 3D detection performance.
arXiv Detail & Related papers (2023-07-27T04:36:16Z) - Nerfbusters: Removing Ghostly Artifacts from Casually Captured NeRFs [78.75872372856597]
Casually captured Neural Radiance Fields (NeRFs) suffer from artifacts such as floaters or flawed geometry when rendered outside the camera trajectory.
We propose a new dataset and evaluation procedure, where two camera trajectories are recorded of the scene.
We show that this data-driven prior removes floaters and improves scene geometry for casual captures.
arXiv Detail & Related papers (2023-04-20T17:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.