DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System
- URL: http://arxiv.org/abs/2408.08231v1
- Date: Thu, 15 Aug 2024 15:56:23 GMT
- Title: DaRec: A Disentangled Alignment Framework for Large Language Model and Recommender System
- Authors: Xihong Yang, Heming Jing, Zixing Zhang, Jindong Wang, Huakang Niu, Shuaiqiang Wang, Yu Lu, Junfeng Wang, Dawei Yin, Xinwang Liu, En Zhu, Defu Lian, Erxue Min,
- Abstract summary: Large language models (LLMs) have demonstrated remarkable performance in recommender systems.
We propose a novel plug-and-play alignment framework for LLMs and collaborative models.
Our method is superior to existing state-of-the-art algorithms.
- Score: 83.34921966305804
- License:
- Abstract: Benefiting from the strong reasoning capabilities, Large language models (LLMs) have demonstrated remarkable performance in recommender systems. Various efforts have been made to distill knowledge from LLMs to enhance collaborative models, employing techniques like contrastive learning for representation alignment. In this work, we prove that directly aligning the representations of LLMs and collaborative models is sub-optimal for enhancing downstream recommendation tasks performance, based on the information theorem. Consequently, the challenge of effectively aligning semantic representations between collaborative models and LLMs remains unresolved. Inspired by this viewpoint, we propose a novel plug-and-play alignment framework for LLMs and collaborative models. Specifically, we first disentangle the latent representations of both LLMs and collaborative models into specific and shared components via projection layers and representation regularization. Subsequently, we perform both global and local structure alignment on the shared representations to facilitate knowledge transfer. Additionally, we theoretically prove that the specific and shared representations contain more pertinent and less irrelevant information, which can enhance the effectiveness of downstream recommendation tasks. Extensive experimental results on benchmark datasets demonstrate that our method is superior to existing state-of-the-art algorithms.
Related papers
- Towards Scalable Semantic Representation for Recommendation [65.06144407288127]
Mixture-of-Codes is proposed to construct semantic IDs based on large language models (LLMs)
Our method achieves superior discriminability and dimension robustness scalability, leading to the best scale-up performance in recommendations.
arXiv Detail & Related papers (2024-10-12T15:10:56Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Enhancing Collaborative Semantics of Language Model-Driven Recommendations via Graph-Aware Learning [10.907949155931474]
Large Language Models (LLMs) are increasingly prominent in the recommendation systems domain.
Gal-Rec enhances the understanding of user-item collaborative semantics by imitating the intent of Graph Neural Networks (GNNs)
Gal-Rec significantly enhances the comprehension of collaborative semantics, and improves recommendation performance.
arXiv Detail & Related papers (2024-06-19T05:50:15Z) - SLMRec: Empowering Small Language Models for Sequential Recommendation [38.51895517016953]
Sequential Recommendation task involves predicting the next item a user is likely to interact with, given their past interactions.
Recent research demonstrates the great impact of LLMs on sequential recommendation systems.
Due to the huge size of LLMs, it is inefficient and impractical to apply a LLM-based model in real-world platforms.
arXiv Detail & Related papers (2024-05-28T07:12:06Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - Representation Learning with Large Language Models for Recommendation [34.46344639742642]
We propose a model-agnostic framework RLMRec to enhance recommenders with large language models (LLMs)empowered representation learning.
RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals.
arXiv Detail & Related papers (2023-10-24T15:51:13Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.