Optimization by Decoded Quantum Interferometry
- URL: http://arxiv.org/abs/2408.08292v1
- Date: Thu, 15 Aug 2024 17:47:42 GMT
- Title: Optimization by Decoded Quantum Interferometry
- Authors: Stephen P. Jordan, Noah Shutty, Mary Wootters, Adam Zalcman, Alexander Schmidhuber, Robbie King, Sergei V. Isakov, Ryan Babbush,
- Abstract summary: We introduce a quantum algorithm for reducing classical optimization problems to classical decoding problems.
We show that DQI achieves a better approximation ratio than any quantum-time classical algorithm known to us.
- Score: 43.55132675053983
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Decoded Quantum Interferometry (DQI), a quantum algorithm for reducing classical optimization problems to classical decoding problems by exploiting structure in the Fourier spectrum of the objective function. DQI reduces sparse max-XORSAT to decoding LDPC codes, which can be achieved using powerful classical algorithms such as Belief Propagation (BP). As an initial benchmark, we compare DQI using belief propagation decoding against classical optimization via simulated annealing. In this setting we present evidence that, for a certain family of max-XORSAT instances, DQI with BP decoding achieves a better approximation ratio on average than simulated annealing, although not better than specialized classical algorithms tailored to those instances. We also analyze a combinatorial optimization problem corresponding to finding polynomials that intersect the maximum number of points. There, DQI efficiently achieves a better approximation ratio than any polynomial-time classical algorithm known to us, thus realizing an apparent exponential quantum speedup. Finally, we show that the problem defined by Yamakawa and Zhandry in order to prove an exponential separation between quantum and classical query complexity is a special case of the optimization problem efficiently solved by DQI.
Related papers
- Classical optimization with imaginary time block encoding on quantum computers: The MaxCut problem [2.4968861883180447]
Finding ground state solutions of diagonal Hamiltonians is relevant for both theoretical as well as practical problems of interest in many domains such as finance, physics and computer science.
Here we use imaginary time evolution through a new block encoding scheme to obtain the ground state of such problems and apply our method to MaxCut as an illustration.
arXiv Detail & Related papers (2024-11-16T08:17:36Z) - Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems.
Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver.
Our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies.
arXiv Detail & Related papers (2024-10-30T08:41:29Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Digitized-counterdiabatic quantum approximate optimization algorithm [3.0638256603183054]
We propose a digitized version of QAOA enhanced via the use of shortcuts to adiabaticity.
We apply our digitized-counterdiabatic QAOA to Ising models, classical optimization problems, and the P-spin model, demonstrating that it outperforms standard QAOA in all cases.
arXiv Detail & Related papers (2021-07-06T17:57:32Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Classically optimal variational quantum algorithms [0.0]
Hybrid quantum-classical algorithms, such as variational quantum algorithms (VQA), are suitable for implementation on NISQ computers.
In this Letter we expand an implicit step of VQAs: the classical pre-computation subroutine which can non-trivially use classical algorithms to simplify, transform, or specify problem instance-specific variational quantum circuits.
arXiv Detail & Related papers (2021-03-31T13:33:38Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Warm-starting quantum optimization [6.832341432995627]
We discuss how to warm-start quantum optimization with an initial state corresponding to the solution of a relaxation of an optimization problem.
This allows the quantum algorithm to inherit the performance guarantees of the classical algorithm.
It is straightforward to apply the same ideas to other randomized-rounding schemes and optimization problems.
arXiv Detail & Related papers (2020-09-21T18:00:09Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.