論文の概要: SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training
- arxiv url: http://arxiv.org/abs/2408.08295v1
- Date: Thu, 15 Aug 2024 17:50:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 13:05:43.280107
- Title: SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training
- Title(参考訳): SLCA++: 事前学習による継続的学習のためのシーケンスファインチューニングのパワーを解き放つ
- Authors: Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, Yunchao Wei,
- Abstract要約: 本稿では,Seq FTのレンズからの進行オーバーフィッティング問題を詳細に解析する。
過度に高速な表現学習と偏りのある分類層がこの問題を構成することを考慮し、先進的なSlow Learner with Alignment(S++)フレームワークを導入する。
提案手法は,バックボーンパラメータの学習率を選択的に減少させるスローラーナーと,ポストホック方式で不規則な分類層を整列させるアライメントを含む。
- 参考スコア(独自算出の注目度): 68.7896349660824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, continual learning with pre-training (CLPT) has received widespread interest, instead of its traditional focus of training from scratch. The use of strong pre-trained models (PTMs) can greatly facilitate knowledge transfer and alleviate catastrophic forgetting, but also suffers from progressive overfitting of pre-trained knowledge into specific downstream tasks. A majority of current efforts often keep the PTMs frozen and incorporate task-specific prompts to instruct representation learning, coupled with a prompt selection process for inference. However, due to the limited capacity of prompt parameters, this strategy demonstrates only sub-optimal performance in continual learning. In comparison, tuning all parameters of PTMs often provides the greatest potential for representation learning, making sequential fine-tuning (Seq FT) a fundamental baseline that has been overlooked in CLPT. To this end, we present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT. Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Classifier Alignment (SLCA++) framework to unleash the power of Seq FT, serving as a strong baseline approach for CLPT. Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Classifier Alignment to align the disjoint classification layers in a post-hoc fashion. We further enhance the efficacy of SL with a symmetric cross-entropy loss, as well as employ a parameter-efficient strategy to implement Seq FT with SLCA++. Across a variety of continual learning scenarios on image classification benchmarks, our approach provides substantial improvements and outperforms state-of-the-art methods by a large margin. Code: https://github.com/GengDavid/SLCA.
- Abstract(参考訳): 近年,CLPT (Continuousal Learning with Pre-Training) は,従来のスクラッチによるトレーニングではなく,広く関心を集めている。
強い事前学習モデル(PTM)の使用は、知識伝達を大幅に促進し、破滅的な忘れを緩和するだけでなく、事前学習された知識を特定の下流タスクに段階的に過度に適合させることにも悩まされる。
現状の取り組みの多くは、PTMを凍結させ、タスク固有のプロンプトを組み込んで表現学習を指導し、推論のための素早い選択プロセスと組み合わせている。
しかし、プロンプトパラメータの容量が限られているため、この戦略は連続学習における準最適性能しか示さない。
対照的に、PTMの全てのパラメータをチューニングすることは、表現学習の最大の可能性を与え、逐次微調整(Seq FT)をCLPTで見落とされた基本的なベースラインにする。
この目的のために、Seq FTのレンズから進行オーバーフィッティング問題を詳細に解析する。
過度に高速な表現学習と偏りのある分類層がこの問題を構成することを考慮し、Sq FTのパワーを解放する高度なSlow Learner with Classifier Alignment(SLCA++)フレームワークを導入し、CLPTの強力なベースラインアプローチとして機能する。
提案手法は,バックボーンパラメータの学習率を選択的に減少させるスローラーナーと,ポストホック方式で不規則な分類層を整列させる分類器アライメントを含む。
対称なクロスエントロピー損失を持つSLの有効性をさらに高め、パラメータ効率の戦略を用いてSeq FTをSLCA++で実装する。
画像分類ベンチマークにおける様々な連続的な学習シナリオに対して,提案手法は大幅な改善と,最先端手法の大幅な性能向上を実現している。
コード:https://github.com/GengDavid/SLCA。
関連論文リスト
- SAFE: Slow and Fast Parameter-Efficient Tuning for Continual Learning with Pre-Trained Models [26.484208658326857]
継続的な学習は、過去の知識を忘れることに抵抗しながら、データストリームにおける新しい概念を漸進的に獲得することを目的としている。
強力な事前学習モデル(PTM)の台頭に伴い、インクリメンタル学習システムのトレーニングへの関心が高まっている。
論文 参考訳(メタデータ) (2024-11-04T15:34:30Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - FeTT: Continual Class Incremental Learning via Feature Transformation Tuning [19.765229703131876]
継続的学習(CL)は、静的で囲われた環境から動的で複雑なシナリオまで、ディープモデルを拡張することを目的としている。
最近のCLモデルは、パラメータ効率の良い微調整戦略を持つ事前学習モデルの利用に徐々に移行している。
本稿では,すべてのタスクにまたがる非パラメトリック微調整バックボーン機能に対するFeTTモデルを提案する。
論文 参考訳(メタデータ) (2024-05-20T06:33:50Z) - Enhancing Few-shot CLIP with Semantic-Aware Fine-Tuning [61.902254546858465]
Contrastive Language-Image Pre-Trainingに基づく手法は、数発の適応タスクで有望な性能を示した。
本稿では,タスク固有のセマンティクスに焦点を合わせるために,トレーニングプロセス中にアテンションプーリング層のパラメータを微調整することを提案する。
論文 参考訳(メタデータ) (2023-11-08T05:18:57Z) - SLCA: Slow Learner with Classifier Alignment for Continual Learning on a
Pre-trained Model [73.80068155830708]
予備学習モデル(CLPM)を用いた連続学習のための広範囲な解析法を提案する。
Slow Learner with Alignment (SLCA) というシンプルなアプローチを提案する。
さまざまなシナリオにおいて、私たちの提案はCLPMの大幅な改善を提供します。
論文 参考訳(メタデータ) (2023-03-09T08:57:01Z) - Multimodal Parameter-Efficient Few-Shot Class Incremental Learning [1.9220716793379256]
FSCIL(Few-Shot Class Incremental Learning)は、いくつかの学習セッションで限られたトレーニング例が利用できる、挑戦的な継続的学習タスクである。
このタスクを成功させるためには、数発のトレーニングセットにおけるバイアス分布に起因する新しいクラスを過度に適合させるのを避ける必要がある。
CPE-CLIPは、最先端の提案と比較してFSCILの性能を著しく改善すると同時に、学習可能なパラメータの数やトレーニングコストを大幅に削減する。
論文 参考訳(メタデータ) (2023-03-08T17:34:15Z) - Fast Hierarchical Learning for Few-Shot Object Detection [57.024072600597464]
転送学習アプローチは、最近、数ショット検出タスクで有望な結果を得た。
これらのアプローチは、ベース検出器の微調整による破滅的な忘れ込みの問題に悩まされる。
この作業における上記の問題に対処する。
論文 参考訳(メタデータ) (2022-10-10T20:31:19Z) - DLCFT: Deep Linear Continual Fine-Tuning for General Incremental
Learning [29.80680408934347]
事前学習した表現からモデルを連続的に微調整するインクリメンタルラーニングのための代替フレームワークを提案する。
本手法は, ニューラルネットワークの線形化手法を利用して, 単純かつ効果的な連続学習を行う。
本手法は,データ増分,タスク増分およびクラス増分学習問題において,一般的な連続学習設定に適用可能であることを示す。
論文 参考訳(メタデータ) (2022-08-17T06:58:14Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
我々は、textit "knowledge gain" と textit "mapping condition" の概念を導入し、Adaptive Scheduling (AdaS) と呼ばれる新しいアルゴリズムを提案する。
実験によると、AdaSは派生した指標を用いて、既存の適応学習手法よりも高速な収束と優れた一般化、そして(b)いつトレーニングを中止するかを決定するための検証セットへの依存の欠如を示す。
論文 参考訳(メタデータ) (2020-06-11T16:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。