論文の概要: Towards Flexible Visual Relationship Segmentation
- arxiv url: http://arxiv.org/abs/2408.08305v1
- Date: Thu, 15 Aug 2024 17:57:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 13:05:43.266830
- Title: Towards Flexible Visual Relationship Segmentation
- Title(参考訳): フレキシブル・ビジュアル・リレーション・セグメンテーションに向けて
- Authors: Fangrui Zhu, Jianwei Yang, Huaizu Jiang,
- Abstract要約: 視覚的関係理解は、人間と物体の相互作用の検出、シーングラフの生成、およびタスクを参照する関係において別々に研究されている。
本稿では,FleVRSを提案する。FleVRSは,上述の3つの側面を,標準および即時的な視覚的関係のセグメンテーションにおいてシームレスに統合する単一モデルである。
当社のフレームワークは,既存のモデルを,標準,即応性,オープンボキャブラリタスクで上回ります。
- 参考スコア(独自算出の注目度): 25.890273232954055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual relationship understanding has been studied separately in human-object interaction(HOI) detection, scene graph generation(SGG), and referring relationships(RR) tasks. Given the complexity and interconnectedness of these tasks, it is crucial to have a flexible framework that can effectively address these tasks in a cohesive manner. In this work, we propose FleVRS, a single model that seamlessly integrates the above three aspects in standard and promptable visual relationship segmentation, and further possesses the capability for open-vocabulary segmentation to adapt to novel scenarios. FleVRS leverages the synergy between text and image modalities, to ground various types of relationships from images and use textual features from vision-language models to visual conceptual understanding. Empirical validation across various datasets demonstrates that our framework outperforms existing models in standard, promptable, and open-vocabulary tasks, e.g., +1.9 $mAP$ on HICO-DET, +11.4 $Acc$ on VRD, +4.7 $mAP$ on unseen HICO-DET. Our FleVRS represents a significant step towards a more intuitive, comprehensive, and scalable understanding of visual relationships.
- Abstract(参考訳): 視覚的関係理解は、人-物間相互作用(HOI)検出、シーングラフ生成(SGG)、参照関係(RR)タスクにおいて別々に研究されている。
これらのタスクの複雑さと相互接続性を考えると、これらのタスクを結合的な方法で効果的に処理できる柔軟なフレームワークを持つことが重要です。
本研究では,FleVRSを提案する。FleVRSは,上記の3つの側面を,標準的かつ迅速な視覚的関係のセグメンテーションにおいてシームレスに統合し,新たなシナリオに適応するためのオープン語彙セグメンテーションの能力も備えた単一モデルである。
FleVRSは、テキストと画像のモダリティの相乗効果を活用し、画像から様々なタイプの関係を基盤とし、視覚言語モデルから視覚的概念理解に至るまで、テキストの特徴を使用する。
例えば、HICO-DETでは+1.9 $mAP$、VRDでは+11.4 $Acc$、VRDでは+4.7 $mAP$である。
私たちのFleVRSは、より直感的で、包括的で、スケーラブルな視覚的関係理解に向けた重要なステップです。
関連論文リスト
- Zero-Shot Video Moment Retrieval from Frozen Vision-Language Models [58.17315970207874]
モーメント・テキストアライメントを容易にするため、任意のVLMから一般化可能なビジュアル・テクスチャの事前適応のためのゼロショット手法を提案する。
3つのVMRベンチマークデータセットで実施された実験は、ゼロショットアルゴリズムの顕著なパフォーマンス上の利点を示している。
論文 参考訳(メタデータ) (2023-09-01T13:06:50Z) - Dual-Gated Fusion with Prefix-Tuning for Multi-Modal Relation Extraction [13.454953507205278]
マルチモーダル関係抽出は、視覚的手がかりを含むテキスト中の2つの実体間の関係を特定することを目的としている。
本稿では,テキスト,エンティティペア,画像/オブジェクトのより深い相関関係をよりよく捉えるための新しいMMREフレームワークを提案する。
本手法は, 少数の状況においても, 強力な競合相手と比較して優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-06-19T15:31:34Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - RelViT: Concept-guided Vision Transformer for Visual Relational
Reasoning [139.0548263507796]
私たちは視覚推論のベースモデルとして視覚変換器(ViT)を使用します。
我々は、ViTの推論能力を改善するために、オブジェクトエンティティとして定義された概念とその関係をよりよく活用する。
HICO と GQA のベンチマークでは,提案モデルである概念誘導型視覚変換器 (略して RelViT ) が従来の手法よりも大幅に優れていたことを示す。
論文 参考訳(メタデータ) (2022-04-24T02:46:43Z) - Language and Visual Entity Relationship Graph for Agent Navigation [54.059606864535304]
VLN(Vision-and-Language Navigation)は、エージェントが自然言語の指示に従って現実世界の環境をナビゲートする必要がある。
テキストと視覚間のモーダル関係をモデル化するための新しい言語とビジュアルエンティティ関係グラフを提案する。
実験によって、私たちは最先端技術よりも改善できる関係を利用しています。
論文 参考訳(メタデータ) (2020-10-19T08:25:55Z) - Attention Guided Semantic Relationship Parsing for Visual Question
Answering [36.84737596725629]
人間は視覚質問回答(VQA)のような視覚言語タスクを実行するのに必要な高レベルな理解を示す意味ラベルとのオブジェクト間関係を説明する
既存のVQAモデルは、モデルがマルチモーダルタスクを解決しようとしている間、単一のドメイン内のオブジェクト間の相互作用を表現することを制約するオブジェクトレベルの視覚的特徴の組み合わせとして関係を表現します。
本稿では、画像中の主観的対象物三重項ごとに意味的特徴ベクトルを生成する汎用意味関係と、重要な関係三重項を識別する相互自己認識機構を提案する。
論文 参考訳(メタデータ) (2020-10-05T00:23:49Z) - Cross-Modality Relevance for Reasoning on Language and Vision [22.41781462637622]
本研究は,視覚的質問応答(VQA)や視覚的推論(NLVR)などの下流課題に対する,言語と視覚データに対する学習と推論の課題を扱う。
我々は,目的タスクの監督の下で,様々な入力モダリティのコンポーネント間の関連性表現を学習するために,エンドツーエンドフレームワークで使用される新しいクロスモーダル関連モジュールを設計する。
提案手法は,公開ベンチマークを用いた2つの異なる言語および視覚タスクの競合性能を示し,その結果を改良する。
論文 参考訳(メタデータ) (2020-05-12T20:17:25Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
マルチステージで粗大なHOI理解のためのカスケードアーキテクチャを提案する。
各段階で、インスタンスローカライゼーションネットワークは、HOI提案を段階的に洗練し、インタラクション認識ネットワークにフィードする。
慎重に設計された人間中心の関係機能により、これらの2つのモジュールは効果的な相互作用理解に向けて協調的に機能する。
論文 参考訳(メタデータ) (2020-03-09T17:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。