論文の概要: Phononic materials with effectively scale-separated hierarchical features using interpretable machine learning
- arxiv url: http://arxiv.org/abs/2408.08428v1
- Date: Thu, 15 Aug 2024 21:35:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 17:09:56.051023
- Title: Phononic materials with effectively scale-separated hierarchical features using interpretable machine learning
- Title(参考訳): 解釈可能な機械学習を用いた効果的スケール分離階層構造を持つ音波材料
- Authors: Mary V. Bastawrous, Zhi Chen, Alexander C. Ogren, Chiara Daraio, Cynthia Rudin, L. Catherine Brinson,
- Abstract要約: 構造的階層的な音波材料は、複数の周波数範囲にわたるエラストダイナミック波と振動の有望なチューニング性を引き起こしている。
本稿では、各長さスケールの特徴が対象周波数範囲内の帯域ギャップをもたらす階層単位セルを求める。
提案手法は,階層型設計空間における新しい領域の探索を柔軟かつ効率的に行う手法である。
- 参考スコア(独自算出の注目度): 57.91994916297646
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Manipulating the dispersive characteristics of vibrational waves is beneficial for many applications, e.g., high-precision instruments. architected hierarchical phononic materials have sparked promise tunability of elastodynamic waves and vibrations over multiple frequency ranges. In this article, hierarchical unit-cells are obtained, where features at each length scale result in a band gap within a targeted frequency range. Our novel approach, the ``hierarchical unit-cell template method,'' is an interpretable machine-learning approach that uncovers global unit-cell shape/topology patterns corresponding to predefined band-gap objectives. A scale-separation effect is observed where the coarse-scale band-gap objective is mostly unaffected by the fine-scale features despite the closeness of their length scales, thus enabling an efficient hierarchical algorithm. Moreover, the hierarchical patterns revealed are not predefined or self-similar hierarchies as common in current hierarchical phononic materials. Thus, our approach offers a flexible and efficient method for the exploration of new regions in the hierarchical design space, extracting minimal effective patterns for inverse design in applications targeting multiple frequency ranges.
- Abstract(参考訳): 振動波の分散特性を操作することは、高精度機器など多くの用途に有用である。
構造的階層的な音波材料は 弾性波と複数の周波数範囲の振動の 有望なチューナビリティを 引き起こした
本稿では、各長さスケールの特徴が対象周波数範囲内の帯域ギャップをもたらす階層単位セルを求める。
我々の新しいアプローチである 'hierarchical unit-cell template method' は、事前に定義されたバンドギャップの目的に対応するグローバルな単位セル形状/トポロジーパターンを明らかにする、解釈可能な機械学習手法である。
粗いスケールのバンドギャップの目的が、その長さスケールの近接性にもかかわらず、その微細な特徴にほとんど影響されず、効率的な階層的アルゴリズムを実現するスケール分離効果が観察される。
さらに、明らかにされた階層的パターンは、現在の階層的音素材料に共通する事前定義や自己相似階層ではない。
したがって,本手法は階層型設計空間における新しい領域の探索に柔軟かつ効率的な手法を提供し,複数の周波数領域を対象とするアプリケーションにおいて,逆設計のための最小限の効果的なパターンを抽出する。
関連論文リスト
- Speech Audio Synthesis from Tagged MRI and Non-Negative Matrix
Factorization via Plastic Transformer [11.91784203088159]
重み付けマップを対応する音声波形に変換するためのエンドツーエンドのディープラーニングフレームワークを開発する。
我々のフレームワークは、重み付けマップから音声音声波形を合成することができ、従来の畳み込みモデルやトランスフォーマーモデルよりも優れている。
論文 参考訳(メタデータ) (2023-09-26T00:21:17Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
周波数領域のセマンティック階層によって駆動される新しい学習可能かつ分離可能な周波数知覚機構を提案する。
ネットワーク全体では、周波数誘導粗い局所化ステージと細部保存の微細局在化ステージを含む2段階モデルを採用している。
提案手法は,既存のモデルと比較して,3つのベンチマークデータセットにおいて競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-17T11:30:46Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
時間遅延ニューラルネットワークとヒストグラム層を組み合わせた新しい手法により,特徴学習の改善と水中音響目標分類を実現する。
提案手法はベースラインモデルより優れており,受動的ソナー目標認識のための統計的文脈を取り入れた有効性を示す。
論文 参考訳(メタデータ) (2023-07-25T19:47:26Z) - Hierarchical Spatio-Temporal Representation Learning for Gait
Recognition [6.877671230651998]
歩行認識は、個人を独自の歩行スタイルで識別する生体計測技術である。
粗いものから細かいものまで歩行特徴を抽出する階層的時間的表現学習フレームワークを提案する。
本手法は,モデル精度と複雑性の適切なバランスを維持しつつ,最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2023-07-19T09:30:00Z) - Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
特徴抽出手順と早期分類タスクを分離する動的知覚器(Dyn-Perceiver)を提案する。
特徴ブランチは画像の特徴を抽出し、分類ブランチは分類タスクに割り当てられた遅延コードを処理する。
早期出口は分類枝に限られており、低レベルの特徴において線形分離性は不要である。
論文 参考訳(メタデータ) (2023-06-20T03:00:22Z) - A novel multi-layer modular approach for real-time fuzzy-identification
of gravitational-wave signals [0.0]
本稿では,音声処理技術に触発された重力波のリアルタイム検出のための新しい階層化フレームワークを提案する。
本稿では,フレームワークの基本概念と,最初の3つのレイヤの導出について述べる。
畳み込みニューラルネットワークのようなより複雑なアプローチと比較して、我々のフレームワークは精度が低い。
論文 参考訳(メタデータ) (2022-06-13T09:48:38Z) - Gravitational-wave selection effects using neural-network classifiers [0.0]
我々は、コンパクトバイナリ・マージから重力波信号のLIGO/Virgo検出性を予測するために、一連のニューラルネットワーク分類器を訓練する。
スピン沈降、高次モード、複数検出器の影響を含める。
我々のアプローチは完全なパイプライン注入と併用できるので、天体物理学とノイズトリガーの実際の分布を重力波の人口分析に含めるための道を開くことができる。
論文 参考訳(メタデータ) (2020-07-13T18:00:04Z) - Capturing scattered discriminative information using a deep architecture
in acoustic scene classification [49.86640645460706]
本研究では,識別情報を捕捉し,同時に過度に適合する問題を緩和する様々な手法について検討する。
我々は、ディープニューラルネットワークにおける従来の非線形アクティベーションを置き換えるために、Max Feature Map法を採用する。
2つのデータ拡張方法と2つの深いアーキテクチャモジュールは、システムの過度な適合を減らし、差別的なパワーを維持するためにさらに検討されている。
論文 参考訳(メタデータ) (2020-07-09T08:32:06Z) - Temporal-Spatial Neural Filter: Direction Informed End-to-End
Multi-channel Target Speech Separation [66.46123655365113]
ターゲット音声分離とは、混合信号からターゲット話者の音声を抽出することを指す。
主な課題は、複雑な音響環境とリアルタイム処理の要件である。
複数話者混合から対象音声波形を直接推定する時間空間ニューラルフィルタを提案する。
論文 参考訳(メタデータ) (2020-01-02T11:12:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。