An Unsupervised Learning Framework Combined with Heuristics for the Maximum Minimal Cut Problem
- URL: http://arxiv.org/abs/2408.08484v1
- Date: Fri, 16 Aug 2024 02:07:34 GMT
- Title: An Unsupervised Learning Framework Combined with Heuristics for the Maximum Minimal Cut Problem
- Authors: Huaiyuan Liu, Xianzhang Liu, Donghua Yang, Hongzhi Wang, Yingchi Long, Mengtong Ji, Dongjing Miao, Zhiyu Liang,
- Abstract summary: This work proposes an unsupervised learning framework combined with Maximums for MMCP.
A crucial observation is that each solution corresponds to at least one spanning tree.
We conduct extensive experiments to evaluate our framework and give a specific application.
- Score: 5.092968949752308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Maximum Minimal Cut Problem (MMCP), a NP-hard combinatorial optimization (CO) problem, has not received much attention due to the demanding and challenging bi-connectivity constraint. Moreover, as a CO problem, it is also a daunting task for machine learning, especially without labeled instances. To deal with these problems, this work proposes an unsupervised learning framework combined with heuristics for MMCP that can provide valid and high-quality solutions. As far as we know, this is the first work that explores machine learning and heuristics to solve MMCP. The unsupervised solver is inspired by a relaxation-plus-rounding approach, the relaxed solution is parameterized by graph neural networks, and the cost and penalty of MMCP are explicitly written out, which can train the model end-to-end. A crucial observation is that each solution corresponds to at least one spanning tree. Based on this finding, a heuristic solver that implements tree transformations by adding vertices is utilized to repair and improve the solution quality of the unsupervised solver. Alternatively, the graph is simplified while guaranteeing solution consistency, which reduces the running time. We conduct extensive experiments to evaluate our framework and give a specific application. The results demonstrate the superiority of our method against two techniques designed.
Related papers
- Learning to Optimize for Mixed-Integer Non-linear Programming [20.469394148261838]
Mixed-integer non-NLP programs (MINLPs) arise in various domains, such as energy systems and transportation, but are notoriously difficult to solve.
Recent advances in machine learning have led to remarkable successes in optimization, area broadly known as learning to optimize.
We propose two differentiable correction layers that generate integer outputs while preserving gradient.
arXiv Detail & Related papers (2024-10-14T20:14:39Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
An emerging strategy to tackle optimization problems involves the adoption of graph neural networks (GNNs) as an alternative to traditional algorithms.
Despite the growing popularity of GNNs and traditional algorithm solvers in the realm of CO, there is limited research on their integrated use and the correlation between them within an end-to-end framework.
We introduce a decision-focused framework that utilizes GNNs to address CO problems with auxiliary support.
arXiv Detail & Related papers (2024-06-05T22:52:27Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Unsupervised Learning for Combinatorial Optimization with Principled
Objective Relaxation [19.582494782591386]
This work proposes an unsupervised learning framework for optimization (CO) problems.
Our key contribution is the observation that if the relaxed objective satisfies entry-wise concavity, a low optimization loss guarantees the quality of the final integral solutions.
In particular, this observation can guide the design of objective models in applications where the objectives are not given explicitly while requiring being modeled in prior.
arXiv Detail & Related papers (2022-07-13T06:44:17Z) - Learning Primal Heuristics for Mixed Integer Programs [5.766851255770718]
We investigate whether effective primals can be automatically learned via machine learning.
We propose a new method to represent an optimization problem as a graph, and train a Graph Conal Network on solved problem instances with known optimal solutions.
The prediction of variable solutions is then leveraged by a novel configuration of the B&B method, Probabilistic Branching with guided Depth-first Search.
arXiv Detail & Related papers (2021-07-02T06:46:23Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - Learning to Schedule Heuristics in Branch-and-Bound [25.79025327341732]
Real-world applications typically require finding good solutions early in the search to enable fast decision-making.
We propose the first data-driven framework for schedulings in an exact MIP solver.
Compared to the default settings of a state-of-the-art academic MIP solver, we are able to reduce the average primal integral by up to 49% on a class of challenging instances.
arXiv Detail & Related papers (2021-03-18T14:49:52Z) - Learning by Fixing: Solving Math Word Problems with Weak Supervision [70.62896781438694]
Previous neural solvers of math word problems (MWPs) are learned with full supervision and fail to generate diverse solutions.
We introduce a textitweakly-supervised paradigm for learning MWPs.
Our method only requires the annotations of the final answers and can generate various solutions for a single problem.
arXiv Detail & Related papers (2020-12-19T03:10:21Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Physarum Powered Differentiable Linear Programming Layers and
Applications [48.77235931652611]
We propose an efficient and differentiable solver for general linear programming problems.
We show the use of our solver in a video segmentation task and meta-learning for few-shot learning.
arXiv Detail & Related papers (2020-04-30T01:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.