論文の概要: Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms
- arxiv url: http://arxiv.org/abs/2408.08494v1
- Date: Fri, 16 Aug 2024 02:33:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 16:50:01.709419
- Title: Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms
- Title(参考訳): 行列とベクトルノルムの残留誤差推定のための最適スケッチ
- Authors: Yi Li, Honghao Lin, David P. Woodruff,
- Abstract要約: 線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
また、スパースリカバリ問題に対して$Omega(k2/pn1-2/p)$低いバウンダリを示し、これは$mathrmpoly(log n)$ factorまで厳密である。
- 参考スコア(独自算出の注目度): 50.15964512954274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of residual error estimation for matrix and vector norms using a linear sketch. Such estimates can be used, for example, to quickly assess how useful a more expensive low-rank approximation computation will be. The matrix case concerns the Frobenius norm and the task is to approximate the $k$-residual $\|A - A_k\|_F$ of the input matrix $A$ within a $(1+\epsilon)$-factor, where $A_k$ is the optimal rank-$k$ approximation. We provide a tight bound of $\Theta(k^2/\epsilon^4)$ on the size of bilinear sketches, which have the form of a matrix product $SAT$. This improves the previous $O(k^2/\epsilon^6)$ upper bound in (Andoni et al. SODA 2013) and gives the first non-trivial lower bound, to the best of our knowledge. In our algorithm, our sketching matrices $S$ and $T$ can both be sparse matrices, allowing for a very fast update time. We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work. For the vector case, we consider the $\ell_p$-norm for $p>2$, where the task is to approximate the $k$-residual $\|x - x_k\|_p$ up to a constant factor, where $x_k$ is the optimal $k$-sparse approximation to $x$. Such vector norms are frequently studied in the data stream literature and are useful for finding frequent items or so-called heavy hitters. We establish an upper bound of $O(k^{2/p}n^{1-2/p}\operatorname{poly}(\log n))$ for constant $\epsilon$ on the dimension of a linear sketch for this problem. Our algorithm can be extended to the $\ell_p$ sparse recovery problem with the same sketching dimension, which seems to be the first such bound for $p > 2$. We also show an $\Omega(k^{2/p}n^{1-2/p})$ lower bound for the sparse recovery problem, which is tight up to a $\mathrm{poly}(\log n)$ factor.
- Abstract(参考訳): 線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
このような推定は、例えば、より高価な低ランク近似計算がどれほど有用であるかを素早く評価するために用いられる。
行列ケースはフロベニウスノルムを扱い、そのタスクは入力行列の$A$の$k$-residual $\|A - A_k\|_F$を$(1+\epsilon)$-factorで近似することである。
行列積 $SAT$ の形式を持つ双線型スケッチのサイズに $\Theta(k^2/\epsilon^4)$ の厳密な境界を与える。
これにより、以前の$O(k^2/\epsilon^6)$ upper bound in (Andoni et al SODA 2013) が改善され、私たちの知識のベストに最初の非自明な下界を与える。
私たちのアルゴリズムでは、スケッチ行列が$S$と$T$はどちらもスパース行列であり、非常に高速な更新時間を可能にします。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
ベクトルの場合、$\ell_p$-norm for $p>2$を考えると、そのタスクは$k$-residual $\|x - x_k\|_p$を定数係数まで近似することであり、$x_k$は$x$に最適な$k$-スパース近似である。
このようなベクトルノルムは、データストリームの文献で頻繁に研究されており、頻繁なアイテムやいわゆるヘビーヒットターを見つけるのに有用である。
我々は、この問題の線型スケッチの次元上で定数$\epsilon$に対して$O(k^{2/p}n^{1-2/p}\operatorname{poly}(\log n))$の上限を確立する。
我々のアルゴリズムは、同じスケッチ次元を持つ$\ell_p$スパースリカバリ問題に拡張することができる。
また、スパースリカバリ問題に対する$\Omega(k^{2/p}n^{1-2/p})$下界も示し、これは$\mathrm{poly}(\log n)$ factorまで厳密である。
関連論文リスト
- Faster Linear Systems and Matrix Norm Approximation via Multi-level Sketched Preconditioning [10.690769339903941]
我々は、$Ax = b$という形式の線形系を解くための、新しい条件付き反復法のクラスを示す。
提案手法は,低ランクなNystr"om近似をスパースランダムスケッチを用いて$A$に構築することに基づいている。
我々は、我々の手法の収束が自然平均条件数$A$に依存することを証明し、Nystr"om近似のランクとして改善する。
論文 参考訳(メタデータ) (2024-05-09T15:53:43Z) - Hardness of Low Rank Approximation of Entrywise Transformed Matrix
Products [9.661328973620531]
自然言語処理における高速アルゴリズムにインスパイアされ、エントリ変換された設定における低階近似について研究する。
我々は、平坦なスパースベクトルのレバレッジスコアの低境界に依存するStrong Exponential Time hypothesis (SETH) から、新しい還元を与える。
我々の低階アルゴリズムは行列ベクトルに依存しているため、我々の下限は、小さな行列に対してさえも$f(UV)W$は$Omega(n2-o(1))$時間を必要とすることを示すために拡張される。
論文 参考訳(メタデータ) (2023-11-03T14:56:24Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
本稿では, 2次行列分解(BMF)問題に対する効率的な$(1+varepsilon)$-approximationアルゴリズムを提案する。
目標は、低ランク因子の積として$mathbfA$を近似することである。
我々の手法はBMF問題の他の一般的な変種に一般化する。
論文 参考訳(メタデータ) (2023-06-02T18:55:27Z) - A Nearly-Optimal Bound for Fast Regression with $\ell_\infty$ Guarantee [16.409210914237086]
行列 $Ain mathbbRntimes d$ とテンソル $bin mathbbRn$ が与えられたとき、 $ell_infty$ の回帰問題を考える。
このような$ell_infty$レグレッションの保証を得るためには、濃密なスケッチ行列を使わなければならない。
我々はまた、OCE(Oblivious Coordinate-wise Embedding)特性を利用した $ell_infty$ guarantee regression のための新しい分析フレームワークを開発した。
論文 参考訳(メタデータ) (2023-02-01T05:22:40Z) - Optimal Query Complexities for Dynamic Trace Estimation [59.032228008383484]
我々は,行列がゆっくりと変化している動的環境において,正確なトレース推定に必要な行列ベクトルクエリ数を最小化する問題を考える。
我々は、$delta$失敗確率で$epsilon$エラーまで、すべての$m$トレースを同時に推定する新しいバイナリツリー要約手順を提供する。
我々の下界(1)は、静的な設定においてもフロベニウスノルム誤差を持つ行列ベクトル積モデルにおけるハッチンソン推定子の第一の厳密な境界を与え、(2)動的トレース推定のための最初の無条件下界を与える。
論文 参考訳(メタデータ) (2022-09-30T04:15:44Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
リッジ回帰問題に対する1+varepsilon$近似解を計算するスケッチベース反復アルゴリズムを提案する。
また,このアルゴリズムがカーネルリッジ回帰の高速化に有効であることを示す。
論文 参考訳(メタデータ) (2022-04-13T22:18:47Z) - Sparse sketches with small inversion bias [79.77110958547695]
逆バイアスは、逆の共分散に依存する量の推定を平均化するときに生じる。
本研究では、確率行列に対する$(epsilon,delta)$-unbiased estimatorという概念に基づいて、逆バイアスを解析するためのフレームワークを開発する。
スケッチ行列 $S$ が密度が高く、すなわちサブガウスのエントリを持つとき、$(epsilon,delta)$-unbiased for $(Atop A)-1$ は $m=O(d+sqrt d/ のスケッチを持つ。
論文 参考訳(メタデータ) (2020-11-21T01:33:15Z) - The Average-Case Time Complexity of Certifying the Restricted Isometry
Property [66.65353643599899]
圧縮センシングにおいて、100万倍のN$センシング行列上の制限等尺性(RIP)はスパースベクトルの効率的な再構成を保証する。
Mtimes N$ matrices with i.d.$mathcalN(0,1/M)$ entry。
論文 参考訳(メタデータ) (2020-05-22T16:55:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。