論文の概要: Detecting Unsuccessful Students in Cybersecurity Exercises in Two Different Learning Environments
- arxiv url: http://arxiv.org/abs/2408.08531v1
- Date: Fri, 16 Aug 2024 04:57:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 16:39:36.910541
- Title: Detecting Unsuccessful Students in Cybersecurity Exercises in Two Different Learning Environments
- Title(参考訳): 2つの異なる学習環境におけるサイバーセキュリティ演習における不必要な学生の検出
- Authors: Valdemar Švábenský, Kristián Tkáčik, Aubrey Birdwell, Richard Weiss, Ryan S. Baker, Pavel Čeleda, Jan Vykopal, Jens Mache, Ankur Chattopadhyay,
- Abstract要約: 本稿では,学生の難易度を予測するための自動ツールを開発する。
潜在的な応用として、このようなモデルは、苦労している生徒を検知し、目標とする支援を提供するインストラクターを助けることができる。
- 参考スコア(独自算出の注目度): 0.37729165787434493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This full paper in the research track evaluates the usage of data logged from cybersecurity exercises in order to predict students who are potentially at risk of performing poorly. Hands-on exercises are essential for learning since they enable students to practice their skills. In cybersecurity, hands-on exercises are often complex and require knowledge of many topics. Therefore, students may miss solutions due to gaps in their knowledge and become frustrated, which impedes their learning. Targeted aid by the instructor helps, but since the instructor's time is limited, efficient ways to detect struggling students are needed. This paper develops automated tools to predict when a student is having difficulty. We formed a dataset with the actions of 313 students from two countries and two learning environments: KYPO CRP and EDURange. These data are used in machine learning algorithms to predict the success of students in exercises deployed in these environments. After extracting features from the data, we trained and cross-validated eight classifiers for predicting the exercise outcome and evaluated their predictive power. The contribution of this paper is comparing two approaches to feature engineering, modeling, and classification performance on data from two learning environments. Using the features from either learning environment, we were able to detect and distinguish between successful and struggling students. A decision tree classifier achieved the highest balanced accuracy and sensitivity with data from both learning environments. The results show that activity data from cybersecurity exercises are suitable for predicting student success. In a potential application, such models can aid instructors in detecting struggling students and providing targeted help. We publish data and code for building these models so that others can adopt or adapt them.
- Abstract(参考訳): この研究トラックの全文は、サイバーセキュリティ演習で記録されたデータを用いて、パフォーマンス不良のリスクがある学生を予測している。
学生が自分のスキルを実践できるようにするため、ハンズオン演習は学習に不可欠である。
サイバーセキュリティでは、ハンズオンエクササイズは複雑で、多くのトピックに関する知識を必要とすることが多い。
そのため、学生は知識不足による解を見逃し、フラストレーションとなり、学習を阻害する可能性がある。
インストラクターの目標支援は役に立つが、インストラクターの時間に制限があるため、苦労している学生を検出する効率的な方法が必要である。
本稿では,学生の難易度を予測するための自動ツールを開発する。
KYPO CRPとEDURangeの2つの学習環境と2つの国からの313人の学生の行動を用いたデータセットを構築した。
これらのデータは、これらの環境にデプロイされた演習における学生の成功を予測するために、機械学習アルゴリズムで使用される。
データから特徴を抽出した後、運動結果を予測するために8つの分類器を訓練し、クロスバリデーションし、それらの予測力を評価した。
本稿では,2つの学習環境のデータに対する特徴工学,モデリング,分類性能の2つのアプローチを比較した。
学習環境と学習環境の両方の特徴を用いて,成功した学生と苦しい学生を識別し,識別することができた。
決定木分類器は,両学習環境のデータと高いバランスの取れた精度と感度を達成した。
その結果,サイバーセキュリティ演習の行動データは,学生の成功を予測するのに適していることがわかった。
潜在的な応用として、このようなモデルは、苦労している生徒を検知し、目標とする支援を提供するインストラクターを助けることができる。
私たちはこれらのモデルを構築するためのデータとコードを公開し、他の人がそれを採用または適応できるようにします。
関連論文リスト
- Early Detection of At-Risk Students Using Machine Learning [0.0]
リスクの高い学生を対象としたスクリーニングにより,高等教育の継続と学生の退学率の持続的課題に取り組むことを目的とする。
この研究は、SVM(Support Vector Machines)、Naive Bayes、K-nearest neighbors(KNN)、決定木(Decision Trees)、ロジスティック回帰(Logistic Regression)、ランダムフォレスト(Random Forest)など、いくつかの機械学習モデルを検討する。
分析の結果,全てのアルゴリズムがリスクの高い学生の予測に許容できる結果をもたらすことが示唆された。
論文 参考訳(メタデータ) (2024-12-12T17:33:06Z) - ClickTree: A Tree-based Method for Predicting Math Students' Performance Based on Clickstream Data [0.0]
我々は,学生のクリックストリームデータに基づいて,数学的課題における生徒のパフォーマンスを予測するための木ベースの手法であるClickTreeを開発した。
この手法は2023年の教育データマイニングカップで0.78844のAUCを達成し、大会では2位となった。
エンド・ユニット・アサイン問題への回答が良好であった学生は、イン・ユニット・アサイン問題により関与し、より多くの問題に正しく答えた。
論文 参考訳(メタデータ) (2024-03-01T23:39:03Z) - TOFU: A Task of Fictitious Unlearning for LLMs [99.92305790945507]
Webからの大量のコーパスに基づいてトレーニングされた大規模な言語モデルは、法的および倫理的懸念を提起する機密データやプライベートデータを再現することができる。
トレーニングデータに存在する情報を忘れるためにモデルをチューニングするアンラーニングは、トレーニング後のプライベートデータを保護する手段を提供する。
未学習の理解を深めるためのベンチマークであるTOFUを紹介する。
論文 参考訳(メタデータ) (2024-01-11T18:57:12Z) - A Predictive Model using Machine Learning Algorithm in Identifying
Students Probability on Passing Semestral Course [0.0]
本研究では,データマイニング手法の分類とアルゴリズムのための決定木を用いる。
新たに発見された予測モデルを利用することで、生徒の現在のコースを合格する確率の予測は、0.7619の精度、0.8333の精度、0.8823のリコール、0.8571のf1のスコアを与える。
論文 参考訳(メタデータ) (2023-04-12T01:57:08Z) - Personalized Student Attribute Inference [0.0]
この作業は、障害のある生徒を自動的に検出できるシステムを作ることだ。
文献で広く使われているナイーブなアプローチは、データセットで利用可能な属性(等級など)と、パーソナライズされた学生属性推論(IPSA)というパーソナライズされたアプローチを比較した。
論文 参考訳(メタデータ) (2022-12-26T23:00:28Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
我々は,データプライバシを同時に保持し,モデルの安定性を向上させるために,Pear Study Learning (PSL) と呼ばれる責任あるアクティブラーニング手法を提案する。
まず,クラウドサイドのタスク学習者(教師)から未学習データを分離する。
トレーニング中、タスク学習者は軽量なアクティブ学習者に指示し、アクティブサンプリング基準に対するフィードバックを提供する。
論文 参考訳(メタデータ) (2022-11-24T13:18:27Z) - Online Continual Learning with Natural Distribution Shifts: An Empirical
Study with Visual Data [101.6195176510611]
オンライン」連続学習は、情報保持とオンライン学習の有効性の両方を評価することができる。
オンライン連続学習では、入力される各小さなデータをまずテストに使用し、次にトレーニングセットに追加し、真にオンラインにします。
本稿では,大規模かつ自然な分布変化を示すオンライン連続視覚学習のための新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2021-08-20T06:17:20Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
ロボット操作のための6つのオフライン学習アルゴリズムについて広範な研究を行う。
我々の研究は、オフラインの人間のデータから学習する際の最も重要な課題を分析します。
人間のデータセットから学ぶ機会を強調します。
論文 参考訳(メタデータ) (2021-08-06T20:48:30Z) - Graph-based Exercise- and Knowledge-Aware Learning Network for Student
Performance Prediction [8.21303828329009]
学生のスコアを正確に予測するためのグラフベースのエクササイズ・アンド・ナレッジ・アウェアラーニングネットワークを提案する。
我々は,エクササイズとナレッジ概念の熟達度を学習し,エクササイズとナレッジ概念の2倍の効果をモデル化する。
論文 参考訳(メタデータ) (2021-06-01T06:53:17Z) - Low-Regret Active learning [64.36270166907788]
トレーニングに最も有用なラベル付きデータポイントを識別するオンライン学習アルゴリズムを開発した。
私たちの仕事の中心は、予測可能な(簡単な)インスタンスの低い後悔を達成するために調整された睡眠専門家のための効率的なアルゴリズムです。
論文 参考訳(メタデータ) (2021-04-06T22:53:45Z) - Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning [109.77163932886413]
本稿では,ロボットによるロボット操作ポリシーを,政治以外の強化学習を通じて微調整することで,新たなバリエーションに適応する方法を示す。
この適応は、タスクをゼロから学習するために必要なデータの0.2%未満を使用する。
事前訓練されたポリシーを適用するという私たちのアプローチは、微調整の過程で大きなパフォーマンス向上につながります。
論文 参考訳(メタデータ) (2020-04-21T17:57:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。