Linear combinations of Gaussian latents in generative models: interpolation and beyond
- URL: http://arxiv.org/abs/2408.08558v3
- Date: Wed, 9 Oct 2024 18:39:43 GMT
- Title: Linear combinations of Gaussian latents in generative models: interpolation and beyond
- Authors: Erik Bodin, Carl Henrik Ek, Henry Moss,
- Abstract summary: Combination of Gaussian variables (COG) is a general purpose method that is easy to implement yet outperforms recent sophisticated methods.
COG naturally addresses the broader task of forming general linear combinations of latent variables, allowing the construction of subspaces of the latent space.
- Score: 6.38754204972456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sampling from generative models has become a crucial tool for applications like data synthesis and augmentation. Diffusion, Flow Matching and Continuous Normalizing Flows have shown effectiveness across various modalities, and rely on Gaussian latent variables for generation. For search-based or creative applications that require additional control over the generation process, it has become common to manipulate the latent variable directly. However, existing approaches for performing such manipulations (e.g. interpolation or forming low-dimensional representations) only work well in special cases or are network or data-modality specific. We propose Combination of Gaussian variables (COG) as a general purpose interpolation method that is easy to implement yet outperforms recent sophisticated methods. Moreover, COG naturally addresses the broader task of forming general linear combinations of latent variables, allowing the construction of subspaces of the latent space, dramatically simplifying the creation of expressive low-dimensional spaces of high-dimensional objects.
Related papers
- Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling [22.256068524699472]
In this work, we propose an Annealed Importance Sampling (AIS) approach to address these issues.
We combine the strengths of Sequential Monte Carlo samplers and VI to explore a wider range of posterior distributions and gradually approach the target distribution.
Experimental results on both toy and image datasets demonstrate that our method outperforms state-of-the-art methods in terms of tighter variational bounds, higher log-likelihoods, and more robust convergence.
arXiv Detail & Related papers (2024-08-13T08:09:05Z) - Trivialized Momentum Facilitates Diffusion Generative Modeling on Lie Groups [37.78638937228254]
This article demonstrates how a technique called trivialization' can transfer the effectiveness of diffusion models in Euclidean spaces to Lie groups.
A momentum variable was algorithmically introduced to help transport the position variable between data distribution and a fixed, easy-to-sample distribution.
The resulting method achieves state-of-the-art performance on protein and RNA torsion angle generation and sophisticated torus datasets.
arXiv Detail & Related papers (2024-05-25T23:53:07Z) - Combining additivity and active subspaces for high-dimensional Gaussian
process modeling [2.7140711924836816]
We show how to combine high-dimensional Gaussian process modeling with a multi-fidelity strategy.
Our contribution for high-dimensional Gaussian process modeling is to combine them with a multi-fidelity strategy, showcasing the advantages through experiments on synthetic functions and datasets.
arXiv Detail & Related papers (2024-02-06T08:49:27Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
Deep neural networks achieve superior performance for learning from independent and identically distributed (i.i.d.) data.
However, their performance deteriorates significantly when handling out-of-distribution (OoD) data.
We develop a simple yet effective method called Generative Interpolation to fuse generative models trained from multiple domains for synthesizing diverse OoD samples.
arXiv Detail & Related papers (2023-07-23T03:53:53Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained
Diffusion [66.21290235237808]
We introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states.
We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs.
Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks.
arXiv Detail & Related papers (2023-01-23T15:18:54Z) - High-Dimensional Undirected Graphical Models for Arbitrary Mixed Data [2.2871867623460207]
In many applications data span variables of different types, whose principled joint analysis is nontrivial.
Recent advances have shown how the binary-continuous case can be tackled, but the general mixed variable type regime remains challenging.
We propose flexible and scalable methodology for data with variables of entirely general mixed type.
arXiv Detail & Related papers (2022-11-21T18:21:31Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z) - Gaussianization Flows [113.79542218282282]
We propose a new type of normalizing flow model that enables both efficient iteration of likelihoods and efficient inversion for sample generation.
Because of this guaranteed expressivity, they can capture multimodal target distributions without compromising the efficiency of sample generation.
arXiv Detail & Related papers (2020-03-04T08:15:06Z) - Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows [40.9137348900942]
We propose a novel type of flow driven by a differential deformation of the Wiener process.
As a result, we obtain a rich time series model whose observable process inherits many of the appealing properties of its base process.
arXiv Detail & Related papers (2020-02-24T20:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.