論文の概要: Overview of the BioLaySumm 2024 Shared Task on the Lay Summarization of Biomedical Research Articles
- arxiv url: http://arxiv.org/abs/2408.08566v1
- Date: Fri, 16 Aug 2024 07:00:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 16:28:41.205738
- Title: Overview of the BioLaySumm 2024 Shared Task on the Lay Summarization of Biomedical Research Articles
- Title(参考訳): バイオレイサム2024(バイオレイサム2024)の生医学研究論文のレイサム化に関する共有課題の概要
- Authors: Tomas Goldsack, Carolina Scarton, Matthew Shardlow, Chenghua Lin,
- Abstract要約: 本稿では,生物医学研究論文のLay Summarisationに関する第2版BioLaySumm共有タスクのセットアップと結果について述べる。
我々は、この重要な課題に対する研究の関心をさらに高め、参加者に新しいアプローチを探求するよう促すことで、初版の成功に基づけることを目指している。
以上の結果から,大規模言語モデル(LLM)の活用に向けて,幅広い革新的アプローチが課題参加者によって取り入れられたことが示唆された。
- 参考スコア(独自算出の注目度): 21.856049605149646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents the setup and results of the second edition of the BioLaySumm shared task on the Lay Summarisation of Biomedical Research Articles, hosted at the BioNLP Workshop at ACL 2024. In this task edition, we aim to build on the first edition's success by further increasing research interest in this important task and encouraging participants to explore novel approaches that will help advance the state-of-the-art. Encouragingly, we found research interest in the task to be high, with this edition of the task attracting a total of 53 participating teams, a significant increase in engagement from the previous edition. Overall, our results show that a broad range of innovative approaches were adopted by task participants, with a predictable shift towards the use of Large Language Models (LLMs).
- Abstract(参考訳): 本稿では,ACL 2024のBioNLPワークショップで開催されている,生物医学研究記事のLay Summarisationに関する第2版共有タスクのセットアップと成果について述べる。
この課題版では、この重要な課題に対する研究の関心をさらに高め、参加者に最先端を推し進めるための新しいアプローチを探求するよう促すことにより、初版の成功に資することを目的としている。
調査の結果、このタスクは53の参加チームを引き寄せ、前バージョンからの参加が大幅に増加した。
以上の結果から,大規模言語モデル(LLM)の活用に向けて,幅広い革新的アプローチがタスク参加者によって採用されていることが示唆された。
関連論文リスト
- SUPER: Evaluating Agents on Setting Up and Executing Tasks from Research Repositories [55.161075901665946]
Superは、機械学習(ML)と自然言語処理(NLP)の研究リポジトリを扱う研究者が直面する現実的な課題を捉えることを目的としている。
本ベンチマークでは,注釈付きエキスパートソリューションを用いたエンドツーエンド問題45,特定の課題に焦点をあてたエキスパートソリューションから導いた152,大規模開発のための602の問題を自動生成する。
我々は、最先端のアプローチが、最良のモデル(GPT-4o)でこれらの問題を解決するのに苦労していることを示し、エンド・ツー・エンドの16.3%と46.1%のシナリオを解決した。
論文 参考訳(メタデータ) (2024-09-11T17:37:48Z) - Intent Detection and Entity Extraction from BioMedical Literature [14.52164637112797]
言語モデル(LLM)は、汎用知性を達成するための努力によって動機付けられ、タスクやドメイン固有の自然言語理解アプローチを置き換える効果は疑問視されている。
スーパーバイザード・ファイン・チューン(Supervised Fine Tuned)アプローチは, 汎用LLMよりも有用であり, 有効であることを示す。
論文 参考訳(メタデータ) (2024-04-04T17:09:52Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
本研究では,大規模言語モデル(LLM)の性能について,バイオインフォマティクスの幅広い課題について検討する。
これらのタスクには、潜在的なコーディング領域の同定、遺伝子とタンパク質の命名されたエンティティの抽出、抗微生物および抗がんペプチドの検出、分子最適化、教育生物情報学問題の解決が含まれる。
以上の結果から, GPT 変種のような LLM がこれらのタスクの多くをうまく処理できることが示唆された。
論文 参考訳(メタデータ) (2024-02-21T11:27:31Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
研究結果を複製するという課題は、分子生物学の分野に重大な障害をもたらしている。
まず、この目的に向けた最初のステップとして、ProBioという名前の包括的なマルチモーダルデータセットをキュレートする。
次に、透明なソリューショントラッキングとマルチモーダルなアクション認識という2つの挑戦的なベンチマークを考案し、BioLab設定におけるアクティビティ理解に関連する特徴と難しさを強調した。
論文 参考訳(メタデータ) (2023-11-01T14:44:01Z) - Overview of the BioLaySumm 2023 Shared Task on Lay Summarization of
Biomedical Research Articles [47.04555835353173]
本稿では,ACL 2023のBioNLPワークショップで開催されているバイオメディカルリサーチ記事のレイ要約(BioLaySumm)における共有タスクの結果について述べる。
この共有タスクの目的は、"遅延要約"を生成することができる抽象的な要約モデルを開発することである。
総合的な結果に加えて,BioLaySumm共有タスクのセットアップと洞察についても報告した。
論文 参考訳(メタデータ) (2023-09-29T15:43:42Z) - Overview of BioASQ 2023: The eleventh BioASQ challenge on Large-Scale
Biomedical Semantic Indexing and Question Answering [0.1759008116536278]
BioASQは、大規模バイオメディカルセマンティックインデックスと質問応答の進歩を促進する一連の課題である。
今年、BioASQは、確立された2つのタスクbとSynergyの新しいエディションと、医療処置を伴うスペイン語における臨床内容の意味的アノテーションに関する新しいタスク(MedProcNER)で構成された。
このバージョンのBioASQでは、競合する28のチームが、チャレンジの3つの異なる共有タスクに対して合計150以上の異なるシステムの結果を提出した。
論文 参考訳(メタデータ) (2023-07-11T09:20:33Z) - Parsing Objects at a Finer Granularity: A Survey [54.72819146263311]
微細な視覚解析は、農業、リモートセンシング、宇宙技術など、多くの現実世界の応用において重要である。
卓越した研究努力は、異なるパラダイムに従って、これらのきめ細かいサブタスクに取り組む。
我々は,パート関係を学習する新たな視点から,先進的な研究を深く研究する。
論文 参考訳(メタデータ) (2022-12-28T04:20:10Z) - LED down the rabbit hole: exploring the potential of global attention
for biomedical multi-document summarisation [59.307534363825816]
我々はPRIMERAをバイオメディカル領域に適応させ,重要なバイオメディカルエンティティにグローバルな注意を払っている。
結果から得られた23モデルの出力を分析し, 追加のグローバルアテンションの存在に関連する結果のパターンを報告する。
論文 参考訳(メタデータ) (2022-09-19T01:13:42Z) - Overview and Insights from the SciVer Shared Task on Scientific Claim
Verification [5.78530472626281]
NAACL 2021 の第2回 Scholarly Document Processing (SDP) ワークショップで提示された SciVer 共有タスクの概要を紹介する。
11チームが合計14回のタスクリーダボードへの提出を行い、主要なタスク評価基準で+23 F1以上の改善を実現した。
論文 参考訳(メタデータ) (2021-07-17T05:47:57Z) - Overview of BioASQ 2021: The ninth BioASQ challenge on Large-Scale
Biomedical Semantic Indexing and Question Answering [0.293168019422713]
BioASQの課題は、大規模バイオメディカルセマンティックインデックスと質問応答の最先端化である。
本稿では,評価フォーラム(CLEF, Conference and Labs of the Evaluation Forum)2021におけるBioASQチャレンジの9回目の概要について述べる。
合計で170以上のシステムを持つ42チームが、チャレンジの4つのタスクに参加するために登録された。
論文 参考訳(メタデータ) (2021-06-28T10:03:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。