The detection power of real entanglement witnesses under local unitary equivalence
- URL: http://arxiv.org/abs/2408.08574v1
- Date: Fri, 16 Aug 2024 07:21:45 GMT
- Title: The detection power of real entanglement witnesses under local unitary equivalence
- Authors: Yi Shen, Lin Chen, Zhihao Bian,
- Abstract summary: We study the differences in detection power between real and complex entanglement witnesses (EWs)
We show that a real EW must detect a real entangled state, and conversely a real entangled state must be detected by a real EW.
We conjecture that all entangled states are detected by the EWs locally equivalent to real ones.
- Score: 6.957947552560839
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since the birth of quantum theory, it has been controversial that whether real numbers are adequate to describe its formalism. Recently, the imaginary unit $i$ has been experimentally proven to be indispensable for quantum mechanics. It motivates us to study the differences in detection power between real and complex entanglement witnesses (EWs), and analyze the detection power of real EWs under local equivalences. We show that a real EW must detect a real entangled state, and conversely a real entangled state must be detected by a real EW. We present a necessary and sufficient condition for the entangled states detected by real EWs, and give a specific example which implies the detection limitations of real EWs. Then, we conjecture that all entangled states are detected by the EWs locally equivalent to real ones. We prove the conjecture for all states with non-positive partial transpose. We also derive a necessary and sufficient condition for the complex PPT (positive-partial-transpose) entangled states detected by the EWs locally equivalent to real ones. We further prove the conjecture for a family of two-quqart PPT entangled states. Another way to figure out the conjecture is to check whether a counterexample exists. We propose an equivalent method to examine the existence of a counterexample from a set-theoretic perspective, and provide some supporting evidence of non-existence. Finally, we derive some results on local projections of EWs with product projectors.
Related papers
- Practical Criteria for Entanglement and Nonlocality in Systems with Additive Observables [44.99833362998488]
For general bipartite mixed states, a sufficient and necessary mathematical condition for certifying entanglement and/or (Bell) non-locality remains unknown.
We derive very simple, handy criteria for detecting entanglement or non-locality in many cases.
We illustrate these results by analyzing the potential detection of entanglement and nonlocality in Higgs to ZZ decays at the LHC.
arXiv Detail & Related papers (2025-03-21T16:48:04Z) - General detectability measure [53.64687146666141]
Distinguishing resource states from resource-free states is a fundamental task in quantum information.
We derived the optimal exponential decay rate of the failure probability for detecting a given $n$-tensor product state.
arXiv Detail & Related papers (2025-01-16T05:39:22Z) - Classifying coherence with a finite set of witnesses [0.07499722271664144]
Coherence is a fundamental resource in quantum information processing, which can be certified by a coherence witness.
We present necessary and sufficient conditions of detecting quantum coherence of $d-$dimensional quantum states based on $Cd_[m,M]$.
The corresponding finite set of coherence witnesses is presented explicitly, which detects all the coherent states.
arXiv Detail & Related papers (2024-10-26T00:44:49Z) - Sample-Optimal Quantum State Tomography for Structured Quantum States in One Dimension [25.333797381352973]
We study whether the number of state copies can saturate the information theoretic bound (i.e., $O(n)$) using physical quantum measurements.
We propose a projected gradient descent (PGD) algorithm to solve the constrained least-squares problem and show that it can efficiently find an estimate with bounded recovery error.
arXiv Detail & Related papers (2024-10-03T15:26:26Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Detecting Entanglement by State Preparation and a Fixed Measurement [7.818765015637801]
Entanglement detection by state preparation can be extended to multipartite states such as graph states.
We present network states for both cases to construct decomposable entanglement witnesses.
Results readily apply to a realistic scenario, for instance, an array of superconducting qubits.
arXiv Detail & Related papers (2023-03-29T00:30:27Z) - Entanglement detection in arbitrary dimensional bipartite quantum
systems through partial realigned moments [0.0]
We propose a separability criterion for detecting bipartite entanglement in arbitrary dimensional quantum states.
Our approach enables detection of both distillable and bound entangled states through a common framework.
arXiv Detail & Related papers (2023-02-09T17:44:46Z) - Correspondence between entangled states and entangled bases under local
transformations [0.0]
We prove that for bipartite states with a local dimension that is either $2, 4$ or $8$, every state corresponds to a basis.
For some states of four qubits we are unable to find a basis, leading us to conjecture that not all quantum states admit a corresponding measurement.
arXiv Detail & Related papers (2023-01-30T20:53:12Z) - Detection of Beyond-Quantum Non-locality based on Standard Local Quantum
Observables [46.03321798937856]
We show that device independent detection cannot distinguish beyond-quantum non-local states from standard quantum states.
This paper gives a device dependent detection based on local observables to distinguish any beyond-quantum non-local state from all standard quantum states.
arXiv Detail & Related papers (2023-01-10T20:19:34Z) - Real quantum operations and state transformations [44.99833362998488]
Resource theory of imaginarity provides a useful framework to understand the role of complex numbers.
In the first part of this article, we study the properties of real'' (quantum) operations in single-party and bipartite settings.
In the second part of this article, we focus on the problem of single copy state transformation via real quantum operations.
arXiv Detail & Related papers (2022-10-28T01:08:16Z) - Quantum state tomography with tensor train cross approximation [84.59270977313619]
We show that full quantum state tomography can be performed for such a state with a minimal number of measurement settings.
Our method requires exponentially fewer state copies than the best known tomography method for unstructured states and local measurements.
arXiv Detail & Related papers (2022-07-13T17:56:28Z) - Search for an efficient entanglement witness operator for bound
entangled states in bipartite quantum systems [0.0]
Entanglement detection problem is one of the important problem in quantum information theory.
There are some powerful entanglement detection criterion such as partial transposition criterion, realignment criterion.
In this work, we take an analytical approach to construct a witness operator.
arXiv Detail & Related papers (2022-04-13T06:41:14Z) - How many mutually unbiased bases are needed to detect bound entangled
states? [1.3544498422625448]
We show that a class of entanglement witnesses composed of mutually unbiased bases can detect bound entanglement if the number of measurements is greater than $d/2+1$.
This is a substantial improvement over other detection methods, requiring significantly fewer resources than either full quantum state tomography or measuring a complete set of $d+1$ MUBs.
arXiv Detail & Related papers (2021-08-02T18:15:11Z) - Machine-Learning-Derived Entanglement Witnesses [55.76279816849472]
We show a correspondence between linear support vector machines (SVMs) and entanglement witnesses.
We use this correspondence to generate entanglement witnesses for bipartite and tripartite qubit (and qudit) target entangled states.
arXiv Detail & Related papers (2021-07-05T22:28:02Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Discrimination of quantum states under locality constraints in the
many-copy setting [18.79968161594709]
We prove that the optimal average error probability always decays exponentially in the number of copies.
We show an infinite separation between the separable (SEP) and PPT operations by providing a pair of states constructed from an unextendible product basis (UPB)
On the technical side, we prove this result by providing a quantitative version of the well-known statement that the tensor product of UPBs is a UPB.
arXiv Detail & Related papers (2020-11-25T23:26:33Z) - Generating and detecting bound entanglement in two-qutrits using a
family of indecomposable positive maps [0.0]
We propose an indecomposable positive map for two-qutrit systems.
A corresponding witness operator is constructed and shown to be weakly optimal.
We find a new entangled state which is not detectable by certain other well-known entanglement detection criteria.
arXiv Detail & Related papers (2020-08-29T12:52:27Z) - Geometry of faithful entanglement [2.9475513512647455]
A typical concept in quantum state analysis is based on the idea that states in the vicinity of some pure entangled state share the same properties.
We prove a structural result on the corresponding fidelity-based entanglement witnesses, resulting in a simple condition for faithfulness of a two-party state.
arXiv Detail & Related papers (2020-08-13T15:11:36Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.