GrassNet: State Space Model Meets Graph Neural Network
- URL: http://arxiv.org/abs/2408.08583v1
- Date: Fri, 16 Aug 2024 07:33:58 GMT
- Title: GrassNet: State Space Model Meets Graph Neural Network
- Authors: Gongpei Zhao, Tao Wang, Yi Jin, Congyan Lang, Yidong Li, Haibin Ling,
- Abstract summary: Graph State Space Network (GrassNet) is a novel graph neural network with theoretical support that provides a simple yet effective scheme for designing arbitrary graph spectral filters.
To the best of our knowledge, our work is the first to employ SSMs for the design of graph GNN spectral filters.
Extensive experiments on nine public benchmarks reveal that GrassNet achieves superior performance in real-world graph modeling tasks.
- Score: 57.62885438406724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing spectral convolutional networks is a formidable task in graph learning. In traditional spectral graph neural networks (GNNs), polynomial-based methods are commonly used to design filters via the Laplacian matrix. In practical applications, however, these polynomial methods encounter inherent limitations, which primarily arise from the the low-order truncation of polynomial filters and the lack of overall modeling of the graph spectrum. This leads to poor performance of existing spectral approaches on real-world graph data, especially when the spectrum is highly concentrated or contains many numerically identical values, as they tend to apply the exact same modulation to signals with the same frequencies. To overcome these issues, in this paper, we propose Graph State Space Network (GrassNet), a novel graph neural network with theoretical support that provides a simple yet effective scheme for designing and learning arbitrary graph spectral filters. In particular, our GrassNet introduces structured state space models (SSMs) to model the correlations of graph signals at different frequencies and derives a unique rectification for each frequency in the graph spectrum. To the best of our knowledge, our work is the first to employ SSMs for the design of GNN spectral filters, and it theoretically offers greater expressive power compared with polynomial filters. Extensive experiments on nine public benchmarks reveal that GrassNet achieves superior performance in real-world graph modeling tasks.
Related papers
- Spatio-Spectral Graph Neural Networks [50.277959544420455]
We propose Spatio-Spectral Graph Networks (S$2$GNNs)
S$2$GNNs combine spatially and spectrally parametrized graph filters.
We show that S$2$GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs.
arXiv Detail & Related papers (2024-05-29T14:28:08Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
Conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs.
Here we show this traditional reliance on the graph Fourier transform to be superfluous.
We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based.
arXiv Detail & Related papers (2023-10-03T17:42:09Z) - Specformer: Spectral Graph Neural Networks Meet Transformers [51.644312964537356]
Spectral graph neural networks (GNNs) learn graph representations via spectral-domain graph convolutions.
We introduce Specformer, which effectively encodes the set of all eigenvalues and performs self-attention in the spectral domain.
By stacking multiple Specformer layers, one can build a powerful spectral GNN.
arXiv Detail & Related papers (2023-03-02T07:36:23Z) - How Powerful are Spectral Graph Neural Networks [9.594432031144715]
Spectral Graph Neural Network is a kind of Graph Neural Network based on graph signal filters.
We first prove that even spectral GNNs without nonlinearity can produce arbitrary graph signals.
We also establish a connection between the expressive power of spectral GNNs and Graph Isomorphism (GI) testing.
arXiv Detail & Related papers (2022-05-23T10:22:12Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - Improving Spectral Graph Convolution for Learning Graph-level
Representation [27.76697047602983]
We show that for learning representations of the entire graphs, the topological distance seems necessary since it characterizes the basic relations between nodes.
By removing it, as well as the limitation of graph filters, the resulting new architecture significantly boosts performance on learning graph representations.
It serves as an understanding that quantitatively measures the effects of the spectrum to input signals in comparison to the well-known spectral/low-pass filters.
arXiv Detail & Related papers (2021-12-14T04:50:46Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - Bridging the Gap Between Spectral and Spatial Domains in Graph Neural
Networks [8.563354084119062]
We show some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain.
The proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain.
arXiv Detail & Related papers (2020-03-26T01:49:24Z) - Spectral Graph Attention Network with Fast Eigen-approximation [103.93113062682633]
Spectral Graph Attention Network (SpGAT) learns representations for different frequency components regarding weighted filters and graph wavelets bases.
Fast approximation variant SpGAT-Cheby is proposed to reduce the computational cost brought by the eigen-decomposition.
We thoroughly evaluate the performance of SpGAT and SpGAT-Cheby in semi-supervised node classification tasks.
arXiv Detail & Related papers (2020-03-16T21:49:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.