How Powerful are Spectral Graph Neural Networks
- URL: http://arxiv.org/abs/2205.11172v1
- Date: Mon, 23 May 2022 10:22:12 GMT
- Title: How Powerful are Spectral Graph Neural Networks
- Authors: Xiyuan Wang, Muhan Zhang
- Abstract summary: Spectral Graph Neural Network is a kind of Graph Neural Network based on graph signal filters.
We first prove that even spectral GNNs without nonlinearity can produce arbitrary graph signals.
We also establish a connection between the expressive power of spectral GNNs and Graph Isomorphism (GI) testing.
- Score: 9.594432031144715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spectral Graph Neural Network is a kind of Graph Neural Network (GNN) based
on graph signal filters, and some models able to learn arbitrary spectral
filters have emerged recently. However, few works analyze the expressive power
of spectral GNNs. This paper studies spectral GNNs' expressive power
theoretically. We first prove that even spectral GNNs without nonlinearity can
produce arbitrary graph signals and give two conditions for reaching
universality. They are: 1) no multiple eigenvalues of graph Laplacian, and 2)
no missing frequency components in node features. We also establish a
connection between the expressive power of spectral GNNs and Graph Isomorphism
(GI) testing which is often used to characterize spatial GNNs' expressive
power. Moreover, we study the difference in empirical performance among
different spectral GNNs with the same expressive power from an optimization
perspective, and motivate the use of an orthogonal basis whose weight function
corresponds to the graph signal density in the spectrum. Inspired by the
analysis, we propose JacobiConv, which uses Jacobi polynomial basis due to
their orthogonality and flexibility to adapt to a wide range of weight
functions. JacobiConv deserts nonlinearity while outperforming all baselines on
both synthetic and real-world datasets.
Related papers
- GrassNet: State Space Model Meets Graph Neural Network [57.62885438406724]
Graph State Space Network (GrassNet) is a novel graph neural network with theoretical support that provides a simple yet effective scheme for designing arbitrary graph spectral filters.
To the best of our knowledge, our work is the first to employ SSMs for the design of graph GNN spectral filters.
Extensive experiments on nine public benchmarks reveal that GrassNet achieves superior performance in real-world graph modeling tasks.
arXiv Detail & Related papers (2024-08-16T07:33:58Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Uplifting the Expressive Power of Graph Neural Networks through Graph
Partitioning [3.236774847052122]
We study the expressive power of graph neural networks through the lens of graph partitioning.
We introduce a novel GNN architecture, namely Graph Partitioning Neural Networks (GPNNs)
arXiv Detail & Related papers (2023-12-14T06:08:35Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
Conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs.
Here we show this traditional reliance on the graph Fourier transform to be superfluous.
We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based.
arXiv Detail & Related papers (2023-10-03T17:42:09Z) - Specformer: Spectral Graph Neural Networks Meet Transformers [51.644312964537356]
Spectral graph neural networks (GNNs) learn graph representations via spectral-domain graph convolutions.
We introduce Specformer, which effectively encodes the set of all eigenvalues and performs self-attention in the spectral domain.
By stacking multiple Specformer layers, one can build a powerful spectral GNN.
arXiv Detail & Related papers (2023-03-02T07:36:23Z) - Representation Power of Graph Neural Networks: Improved Expressivity via
Algebraic Analysis [124.97061497512804]
We show that standard Graph Neural Networks (GNNs) produce more discriminative representations than the Weisfeiler-Lehman (WL) algorithm.
We also show that simple convolutional architectures with white inputs, produce equivariant features that count the closed paths in the graph.
arXiv Detail & Related papers (2022-05-19T18:40:25Z) - Improving Spectral Graph Convolution for Learning Graph-level
Representation [27.76697047602983]
We show that for learning representations of the entire graphs, the topological distance seems necessary since it characterizes the basic relations between nodes.
By removing it, as well as the limitation of graph filters, the resulting new architecture significantly boosts performance on learning graph representations.
It serves as an understanding that quantitatively measures the effects of the spectrum to input signals in comparison to the well-known spectral/low-pass filters.
arXiv Detail & Related papers (2021-12-14T04:50:46Z) - Bridging the Gap Between Spectral and Spatial Domains in Graph Neural
Networks [8.563354084119062]
We show some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain.
The proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain.
arXiv Detail & Related papers (2020-03-26T01:49:24Z) - Graphon Pooling in Graph Neural Networks [169.09536309161314]
Graph neural networks (GNNs) have been used effectively in different applications involving the processing of signals on irregular structures modeled by graphs.
We propose a new strategy for pooling and sampling on GNNs using graphons which preserves the spectral properties of the graph.
arXiv Detail & Related papers (2020-03-03T21:04:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.