論文の概要: Bi-Directional Deep Contextual Video Compression
- arxiv url: http://arxiv.org/abs/2408.08604v2
- Date: Mon, 25 Nov 2024 06:15:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:15:26.050275
- Title: Bi-Directional Deep Contextual Video Compression
- Title(参考訳): 双方向深層映像圧縮
- Authors: Xihua Sheng, Li Li, Dong Liu, Shiqi Wang,
- Abstract要約: 本稿では,Bフレームに適した双方向深層映像圧縮方式をDCVC-Bと呼ぶ。
まず、効果的な動き差分符号化のための双方向の動き差分文脈伝搬法を提案する。
次に、双方向文脈圧縮モデルと対応する双方向時間エントロピーモデルを提案する。
第3に,階層的品質構造に基づくトレーニング戦略を提案し,画像の大規模なグループ間で効果的なビット割り当てを実現する。
- 参考スコア(独自算出の注目度): 17.195099321371526
- License:
- Abstract: Deep video compression has made remarkable process in recent years, with the majority of advancements concentrated on P-frame coding. Although efforts to enhance B-frame coding are ongoing, their compression performance is still far behind that of traditional bi-directional video codecs. In this paper, we introduce a bi-directional deep contextual video compression scheme tailored for B-frames, termed DCVC-B, to improve the compression performance of deep B-frame coding. Our scheme mainly has three key innovations. First, we develop a bi-directional motion difference context propagation method for effective motion difference coding, which significantly reduces the bit cost of bi-directional motions. Second, we propose a bi-directional contextual compression model and a corresponding bi-directional temporal entropy model, to make better use of the multi-scale temporal contexts. Third, we propose a hierarchical quality structure-based training strategy, leading to an effective bit allocation across large groups of pictures (GOP). Experimental results show that our DCVC-B achieves an average reduction of 26.6% in BD-Rate compared to the reference software for H.265/HEVC under random access conditions. Remarkably, it surpasses the performance of the H.266/VVC reference software on certain test datasets under the same configuration. We anticipate our work can provide valuable insights and bring up deep B-frame coding to the next level.
- Abstract(参考訳): 近年、ディープビデオ圧縮は顕著なプロセスとなり、ほとんどの進歩はPフレームのコーディングに集中している。
Bフレーム符号化の強化努力は進行中であるが、圧縮性能は従来の双方向ビデオコーデックよりもはるかに遅れている。
本稿では,深部Bフレーム符号化の圧縮性能を向上させるため,Bフレームに適した双方向の深部Bフレーム圧縮方式(DCVC-B)を提案する。
私たちの計画には、主に3つの重要な革新があります。
まず, 双方向動作のビットコストを大幅に低減する, 効果的な動き差符号化のための双方向動作差コンテキスト伝搬法を提案する。
次に,両方向の文脈圧縮モデルと対応する両方向の時間エントロピーモデルを提案する。
第3に、階層的な構造に基づくトレーニング戦略を提案し、大規模な画像群(GOP)間で効果的なビット割り当てを実現する。
実験の結果,我々のDCVC-Bは,ランダムアクセス条件下でのH.265/HEVCの基準ソフトウェアと比較して平均26.6%のBD-Rate削減を実現していることがわかった。
注目すべきは、H.266/VVC参照ソフトウェアと同じ構成の特定のテストデータセット上での性能を上回ることだ。
私たちは、作業が貴重な洞察を与え、Bフレームの深いコーディングを次のレベルに引き上げることを期待しています。
関連論文リスト
- Improved Video VAE for Latent Video Diffusion Model [55.818110540710215]
ビデオオートエンコーダ(VAE)は、ピクセルデータを低次元の潜在空間に圧縮することを目的としており、OpenAIのSoraで重要な役割を果たしている。
既存のVAEのほとんどは、時間空間圧縮のために3次元因果構造に事前訓練された画像VAEを注入する。
ビデオVAE(IV-VAE)をさらに改善するための新しいKTCアーキテクチャとGCConvモジュールを提案する。
論文 参考訳(メタデータ) (2024-11-10T12:43:38Z) - Accelerating Learned Video Compression via Low-Resolution Representation Learning [18.399027308582596]
低解像度表現学習に焦点を当てた学習ビデオ圧縮のための効率最適化フレームワークを提案する。
提案手法は,H.266参照ソフトウェアVTMの低遅延P構成と同等の性能を実現する。
論文 参考訳(メタデータ) (2024-07-23T12:02:57Z) - Compression-Realized Deep Structural Network for Video Quality Enhancement [78.13020206633524]
本稿では,圧縮ビデオの品質向上の課題に焦点をあてる。
既存の手法のほとんどは、圧縮コーデック内での事前処理を最適に活用するための構造設計を欠いている。
新しいパラダイムは、より意識的な品質向上プロセスのために緊急に必要である。
論文 参考訳(メタデータ) (2024-05-10T09:18:17Z) - IBVC: Interpolation-driven B-frame Video Compression [68.18440522300536]
Bフレームビデオ圧縮は、双方向動作推定と動き補償(MEMC)符号化をミドルフレーム再構成に適用することを目的としている。
従来の学習アプローチでは、しばしば双方向の光フロー推定に依存するニューラルネットワークのPフレームコーデックをBフレームに直接拡張する。
これらの問題に対処するために,IBVC (Interpolation-B-frame Video Compression) という単純な構造を提案する。
論文 参考訳(メタデータ) (2023-09-25T02:45:51Z) - Neural Video Compression with Temporal Layer-Adaptive Hierarchical
B-frame Coding [5.8550373172233305]
時間層適応最適化を用いた階層的Bフレーム符号化を用いたNVCモデルを提案する。
このモデルはベースラインに対して-39.86%のBDレートを達成している。
また、単純な双方向拡張よりも最大-49.13%のBDレートゲインを持つ大きなあるいは複雑な動きを持つシーケンスの課題も解決する。
論文 参考訳(メタデータ) (2023-08-30T06:49:34Z) - Scene Matters: Model-based Deep Video Compression [13.329074811293292]
本稿では,シーンを映像シーケンスの基本単位とみなすモデルベースビデオ圧縮(MVC)フレームワークを提案する。
提案したMVCは,1シーンでビデオシーケンス全体の新しい強度変化を直接モデル化し,冗長性を低減せず,非冗長表現を求める。
提案手法は,最新のビデオ標準H.266に比べて最大20%の削減を実現し,既存のビデオ符号化方式よりもデコーディングの効率がよい。
論文 参考訳(メタデータ) (2023-03-08T13:15:19Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
不安定な圧縮性能の問題に対処するために,不均一変形補償戦略(HDCVC)を用いた学習ビデオ圧縮フレームワークを提案する。
より具体的には、提案アルゴリズムは隣接する2つのフレームから特徴を抽出し、コンテンツ近傍の不均一な変形(HetDeform)カーネルオフセットを推定する。
実験結果から,HDCVCは最近の最先端の学習ビデオ圧縮手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-11T02:31:31Z) - Efficient VVC Intra Prediction Based on Deep Feature Fusion and
Probability Estimation [57.66773945887832]
本稿では,フレーム内予測におけるVersatile Video Coding (VVC) の複雑性を,深層融合と確率推定の2段階のフレームワークを用いて最適化することを提案する。
特に高精細度(HD)および超高精細度(UHD)ビデオシーケンスにおいて,提案手法の優位性を示す実験結果が得られた。
論文 参考訳(メタデータ) (2022-05-07T08:01:32Z) - Learning for Video Compression with Hierarchical Quality and Recurrent
Enhancement [164.7489982837475]
本稿では,階層型ビデオ圧縮(HLVC)手法を提案する。
我々のHLVCアプローチでは、エンコーダ側とデコーダ側の低品質フレームの圧縮と強化を容易にするため、階層的品質は符号化効率の恩恵を受ける。
論文 参考訳(メタデータ) (2020-03-04T09:31:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。