論文の概要: Navigating Uncertainties in Machine Learning for Structural Dynamics: A Comprehensive Review of Probabilistic and Non-Probabilistic Approaches in Forward and Inverse Problems
- arxiv url: http://arxiv.org/abs/2408.08629v1
- Date: Fri, 16 Aug 2024 09:43:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 16:07:32.353250
- Title: Navigating Uncertainties in Machine Learning for Structural Dynamics: A Comprehensive Review of Probabilistic and Non-Probabilistic Approaches in Forward and Inverse Problems
- Title(参考訳): 構造力学における機械学習の不確かさの探索--フォワード問題と逆問題における確率的・非確率的アプローチの包括的考察
- Authors: Wang-Ji Yan, Lin-Feng Mei, Jiang Mo, Costas Papadimitriou, Ka-Veng Yuen, Michael Beer,
- Abstract要約: 本稿では,機械学習(ML)における不確実性のナビゲートに関する包括的レビューを行う。
確率的手法や非確率的手法に対する不確実性に気付くアプローチを列挙する。
このレビューは、ML技術を利用して構造的動的問題の不確実性に対処する際、研究者や実践者が情報的決定を行うのを支援することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of big data, machine learning (ML) has become a powerful tool in various fields, notably impacting structural dynamics. ML algorithms offer advantages by modeling physical phenomena based on data, even in the absence of underlying mechanisms. However, uncertainties such as measurement noise and modeling errors can compromise the reliability of ML predictions, highlighting the need for effective uncertainty awareness to enhance prediction robustness. This paper presents a comprehensive review on navigating uncertainties in ML, categorizing uncertainty-aware approaches into probabilistic methods (including Bayesian and frequentist perspectives) and non-probabilistic methods (such as interval learning and fuzzy learning). Bayesian neural networks, known for their uncertainty quantification and nonlinear mapping capabilities, are emphasized for their superior performance and potential. The review covers various techniques and methodologies for addressing uncertainties in ML, discussing fundamentals and implementation procedures of each method. While providing a concise overview of fundamental concepts, the paper refrains from in-depth critical explanations. Strengths and limitations of each approach are examined, along with their applications in structural dynamic forward problems like response prediction, sensitivity assessment, and reliability analysis, and inverse problems like system identification, model updating, and damage identification. Additionally, the review identifies research gaps and suggests future directions for investigations, aiming to provide comprehensive insights to the research community. By offering an extensive overview of both probabilistic and non-probabilistic approaches, this review aims to assist researchers and practitioners in making informed decisions when utilizing ML techniques to address uncertainties in structural dynamic problems.
- Abstract(参考訳): ビッグデータの時代、機械学習(ML)は様々な分野で強力なツールとなり、特に構造力学に影響を与えている。
MLアルゴリズムは、基礎となるメカニズムがなくても、データに基づいて物理現象をモデル化することで利点を提供する。
しかし、計測ノイズやモデリングエラーなどの不確実性はML予測の信頼性を損なう可能性があり、予測の堅牢性を高めるために効果的な不確実性認識の必要性を強調している。
本稿では,MLの不確実性をナビゲートし,不確実性を考慮したアプローチを確率論的手法(ベイズ的・頻繁な視点を含む)と非確率的手法(インターバルラーニングやファジィラーニングなど)に分類する。
不確かさの定量化と非線形マッピング能力で知られているベイズニューラルネットワークは、その優れた性能とポテンシャルで強調されている。
本総説では,MLにおける不確実性に対処するための様々な手法と方法論を概説し,各手法の基本と実装方法について論じる。
基本概念の簡潔な概要を提供する一方で、論文は深い批判的な説明を控えている。
応答予測や感度評価,信頼性解析などの構造的前方問題,システム識別やモデル更新,損傷識別といった逆問題など,各手法の強度と限界について検討した。
さらに、研究のギャップを特定し、研究コミュニティに総合的な洞察を提供することを目的として、今後の研究の方向性を提案する。
本レビューは,確率的アプローチと非確率的アプローチの両方を網羅的に概観することにより,ML技術を用いて構造的動的問題の不確実性に対処する上で,研究者や実践者が情報的決定を行うのを支援することを目的とする。
関連論文リスト
- Rethinking the Uncertainty: A Critical Review and Analysis in the Era of Large Language Models [42.563558441750224]
大規模言語モデル(LLM)は、幅広い人工知能応用の基礎となっている。
現在の手法はしばしば、真の不確実性を特定し、測定し、対処するのに苦労する。
本稿では,不確実性の種類や原因を特定し,理解するための包括的枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-26T15:07:15Z) - A Survey of Uncertainty Estimation in LLMs: Theory Meets Practice [7.687545159131024]
我々は、不確実性と信頼の定義を明確にし、それらの区別とモデル予測への含意を明らかにする。
本稿では,アプローチから導いた不確実性推定手法を分類する。
また,分布外検出,データアノテーション,質問の明確化など,多様なアプリケーションに不確実性をもたらす技術についても検討する。
論文 参考訳(メタデータ) (2024-10-20T07:55:44Z) - Machine Learning Robustness: A Primer [12.426425119438846]
この議論はロバストネスの詳細な定義から始まり、MLモデルが様々な環境条件と予期せぬ環境条件で安定した性能を維持する能力であることを示している。
この章では、データバイアスやモデル複雑性、未特定のMLパイプラインの落とし穴など、堅牢性を阻害する要因について詳しく説明している。
議論は、デバイアスや拡張といったデータ中心のアプローチから始まる、堅牢性を促進するための改善戦略を探求する。
論文 参考訳(メタデータ) (2024-04-01T03:49:42Z) - Are Uncertainty Quantification Capabilities of Evidential Deep Learning a Mirage? [35.15844215216846]
EDL法は,特定の目的関数を最小化することにより,予測分布上のメタ分布を学習する。
近年の研究では、学習した不確実性は信頼できないと結論づける既存の方法の限界が特定されている。
本研究では,多種多様な目的関数を統一することにより,多種多様なEDL手法の挙動をより深く理解する。
我々は,EDL法が下流タスクに実証的に有効であるとしても,不確実な定量化能力に乏しいにもかかわらず,これは発生すると結論付けた。
論文 参考訳(メタデータ) (2024-02-09T03:23:39Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - A Robust Learning Methodology for Uncertainty-aware Scientific Machine
Learning models [0.0]
本研究は,SciMLの不確実性評価のための包括的方法論を提案する。
提案手法で考慮された不確実性は、理論と因果モデルがないこと、データの破損や不完全性への敏感さ、計算努力である。
この手法はケーススタディを通じて検証され、重合反応器用のソフトセンサーを開発した。
論文 参考訳(メタデータ) (2022-09-05T10:56:58Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
我々は,モデル予測に関連する不確実性を推定し,伝達することにより,相補的な透明性の形式を考えることについて議論する。
モデルの不公平性を緩和し、意思決定を強化し、信頼できるシステムを構築するために不確実性がどのように使われるかを説明する。
この研究は、機械学習、可視化/HCI、デザイン、意思決定、公平性にまたがる文学から引き出された学際的レビューを構成する。
論文 参考訳(メタデータ) (2020-11-15T17:26:14Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。