論文の概要: Adaptive Layer Selection for Efficient Vision Transformer Fine-Tuning
- arxiv url: http://arxiv.org/abs/2408.08670v1
- Date: Fri, 16 Aug 2024 11:27:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 15:45:34.996039
- Title: Adaptive Layer Selection for Efficient Vision Transformer Fine-Tuning
- Title(参考訳): 視覚変換器ファインチューニングのための適応層選択法
- Authors: Alessio Devoto, Federico Alvetreti, Jary Pomponi, Paolo Di Lorenzo, Pasquale Minervini, Simone Scardapane,
- Abstract要約: 我々は、$textbfALaST$(textitAdaptive Layer Selection Fine-Tuning for Vision Transformers$)と呼ばれるViTの効率的な微調整方法を紹介した。
我々のアプローチは、すべての層が微調整中に等しく重要であるわけではなく、その重要性が現在のミニバッチによって異なるという観察に基づいている。
この適応型計算アロケーションは,計算資源の分散に最適に近いスケジュールを実現できることを示す。
- 参考スコア(独自算出の注目度): 18.776903525210933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, foundation models based on Vision Transformers (ViTs) have become widely available. However, their fine-tuning process is highly resource-intensive, and it hinders their adoption in several edge or low-energy applications. To this end, in this paper we introduce an efficient fine-tuning method for ViTs called $\textbf{ALaST}$ ($\textit{Adaptive Layer Selection Fine-Tuning for Vision Transformers}$) to speed up the fine-tuning process while reducing computational cost, memory load, and training time. Our approach is based on the observation that not all layers are equally critical during fine-tuning, and their importance varies depending on the current mini-batch. Therefore, at each fine-tuning step, we adaptively estimate the importance of all layers and we assign what we call ``compute budgets'' accordingly. Layers that were allocated lower budgets are either trained with a reduced number of input tokens or kept frozen. Freezing a layer reduces the computational cost and memory usage by preventing updates to its weights, while discarding tokens removes redundant data, speeding up processing and reducing memory requirements. We show that this adaptive compute allocation enables a nearly-optimal schedule for distributing computational resources across layers, resulting in substantial reductions in training time (up to 1.5x), FLOPs (up to 2x), and memory load (up to 2x) compared to traditional full fine-tuning approaches. Additionally, it can be successfully combined with other parameter-efficient fine-tuning methods, such as LoRA.
- Abstract(参考訳): 近年,視覚変換器(ViT)に基づく基礎モデルが広く普及している。
しかし、その微調整プロセスは非常にリソース集約的であり、エッジや低エネルギーのアプリケーションでは採用を妨げている。
そこで本論文では,視覚変換器のファインチューニングを高速化し,計算コスト,メモリ負荷,トレーニング時間を削減しつつ,ViTの効率的な微調整手法である$\textbf{ALaST}$$(\textit{Adaptive Layer Selection Fine-Tuning for Vision Transformers}$)を導入する。
我々のアプローチは、すべての層が微調整中に等しく重要であるわけではなく、その重要性が現在のミニバッチによって異なるという観察に基づいている。
したがって、各微調整ステップにおいて、すべてのレイヤの重要性を適応的に推定し、それに応じて '`compute budgets'' と呼ぶものを割り当てる。
低い予算で割り当てられたレイヤは、少ない数の入力トークンでトレーニングされるか、凍結される。
レイヤの凍結は処理コストとメモリ使用量を削減し、トークンの破棄は冗長なデータを取り除き、処理を高速化し、メモリ要求を短縮する。
この適応型計算アロケーションにより、計算リソースを階層に分散するほぼ最適スケジュールが可能であり、従来のフルチューニングアプローチと比較して、トレーニング時間(最大1.5倍)、FLOP(最大2倍)、メモリ負荷(最大2倍)を大幅に削減できることを示す。
加えて、LoRAのような他のパラメータ効率の良い微調整手法とうまく組み合わせることができる。
関連論文リスト
- FRUGAL: Memory-Efficient Optimization by Reducing State Overhead for Scalable Training [51.39495282347475]
我々は、新しいメモリ効率最適化フレームワークであるtextbfF$ull-$textbfR$ank $textbfU$pdates with $textbfG$r$textbfA$dient sp$textbfL$ittingを紹介します。
当社のフレームワークは,GaLoreやBAdamなど,さまざまな低ランク更新選択技術と統合することが可能です。
論文 参考訳(メタデータ) (2024-11-12T14:41:07Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections [35.133698935322634]
大規模言語モデル(LLM)は、最近、多くの言語処理タスクに対処するための強力なツールとして登場した。
勾配勾配勾配を用いた効率的なモデル収束に必要な重要な成分を同定し,特徴付ける。
この結果から, 微調整と事前学習の両方のための, 安価かつメモリ効率のよいアルゴリズムが得られた。
論文 参考訳(メタデータ) (2024-05-28T09:23:14Z) - Sparse-Tuning: Adapting Vision Transformers with Efficient Fine-tuning and Inference [14.030836300221756]
textbfSparse-Tuningは、画像やビデオの情報冗長性を考慮に入れた新しいPEFTメソッドである。
Sparse-Tuningは各層で処理されるトークンの量を最小限に抑え、計算とメモリのオーバーヘッドを2次的に削減する。
我々のSparse-TuningはGFLOPsを62%-70%に削減し,最先端性能を実現した。
論文 参考訳(メタデータ) (2024-05-23T15:34:53Z) - Block Selective Reprogramming for On-device Training of Vision Transformers [12.118303034660531]
本稿では,事前学習したモデルのブロック全体のごく一部のみを微調整するブロック選択型再プログラミング(BSR)を提案する。
既存の代替手法と比較して、トレーニングメモリを最大1.4倍、計算コストを最大2倍に削減する。
論文 参考訳(メタデータ) (2024-03-25T08:41:01Z) - Time-, Memory- and Parameter-Efficient Visual Adaptation [75.28557015773217]
バックボーンを介して勾配をバックプロパゲートしない適応法を提案する。
凍結した、事前訓練されたバックボーンの機能を利用する軽量ネットワークを並列に設計することで、これを実現する。
論文 参考訳(メタデータ) (2024-02-05T10:55:47Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
分散を低減した行列生成のために, WTA-CRS と呼ばれる新しい非バイアス推定系を提案する。
我々の研究は、チューニング変換器の文脈において、提案した推定器が既存のものよりも低い分散を示すという理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-05-24T15:52:08Z) - Towards Memory- and Time-Efficient Backpropagation for Training Spiking
Neural Networks [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングのためのエネルギー効率の高いモデルである。
本研究では,学習効率を大幅に向上させつつ,高い性能を達成できる空間学習時間(SLTT)法を提案する。
BPTTと比較して, メモリコストとトレーニング時間は, それぞれ70%以上, 50%以上削減されている。
論文 参考訳(メタデータ) (2023-02-28T05:01:01Z) - AdapLeR: Speeding up Inference by Adaptive Length Reduction [15.57872065467772]
本稿では,下流性能の低下を最小限に抑えながら,BERTの計算コストを削減する手法を提案する。
提案手法は,レイヤ間のコントリビューションの少ないトークンを動的に除去し,結果として長さが短くなり,計算コストが低下する。
様々な分類タスクに関する実験では、性能の犠牲を伴わずに、推論時間中に最大22倍のスピードアップを示す。
論文 参考訳(メタデータ) (2022-03-16T23:41:38Z) - Mesa: A Memory-saving Training Framework for Transformers [58.78933015299703]
本稿では,トランスフォーマーのためのメモリ節約トレーニングフレームワークであるMesaを紹介する。
Mesaは、フォワードパス中に正確なアクティベーションを使用し、低精度のアクティベーションを格納することで、トレーニング中のメモリ消費を減らす。
ImageNet、CIFAR-100、ADE20Kの実験は、Mesaがトレーニング中にメモリフットプリントの半分を削減できることを示した。
論文 参考訳(メタデータ) (2021-11-22T11:23:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。