Towards Physical World Backdoor Attacks against Skeleton Action Recognition
- URL: http://arxiv.org/abs/2408.08671v1
- Date: Fri, 16 Aug 2024 11:29:33 GMT
- Title: Towards Physical World Backdoor Attacks against Skeleton Action Recognition
- Authors: Qichen Zheng, Yi Yu, Siyuan Yang, Jun Liu, Kwok-Yan Lam, Alex Kot,
- Abstract summary: Skeleton Action Recognition (SAR) has attracted significant interest for its efficient representation of the human skeletal structure.
Recent studies have raised security concerns in SAR models, particularly their vulnerability to adversarial attacks.
We introduce the Physical Skeleton Backdoor Attacks (PSBA), the first exploration of physical backdoor attacks against SAR.
- Score: 21.261855773907616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Skeleton Action Recognition (SAR) has attracted significant interest for its efficient representation of the human skeletal structure. Despite its advancements, recent studies have raised security concerns in SAR models, particularly their vulnerability to adversarial attacks. However, such strategies are limited to digital scenarios and ineffective in physical attacks, limiting their real-world applicability. To investigate the vulnerabilities of SAR in the physical world, we introduce the Physical Skeleton Backdoor Attacks (PSBA), the first exploration of physical backdoor attacks against SAR. Considering the practicalities of physical execution, we introduce a novel trigger implantation method that integrates infrequent and imperceivable actions as triggers into the original skeleton data. By incorporating a minimal amount of this manipulated data into the training set, PSBA enables the system misclassify any skeleton sequences into the target class when the trigger action is present. We examine the resilience of PSBA in both poisoned and clean-label scenarios, demonstrating its efficacy across a range of datasets, poisoning ratios, and model architectures. Additionally, we introduce a trigger-enhancing strategy to strengthen attack performance in the clean label setting. The robustness of PSBA is tested against three distinct backdoor defenses, and the stealthiness of PSBA is evaluated using two quantitative metrics. Furthermore, by employing a Kinect V2 camera, we compile a dataset of human actions from the real world to mimic physical attack situations, with our findings confirming the effectiveness of our proposed attacks. Our project website can be found at https://qichenzheng.github.io/psba-website.
Related papers
- DiffPhysBA: Diffusion-based Physical Backdoor Attack against Person Re-Identification in Real-World [37.766746270067834]
Person Re-Identification (ReID) systems pose a significant security risk from backdoor attacks, allowing adversaries to evade tracking or impersonate others.
This paper investigates how backdoor attacks can be deployed in real-world scenarios, where a ReID model is typically trained on data collected in the digital domain and then deployed in a physical environment.
We introduce a novel diffusion-based physical backdoor attack (DiffPhysBA) method that adopts a training-free similarity-guided sampling process to enhance the resemblance between generated and physical triggers.
arXiv Detail & Related papers (2024-05-30T12:22:06Z) - Defense against Joint Poison and Evasion Attacks: A Case Study of DERMS [2.632261166782093]
We propose the first framework of IDS that is robust against joint poisoning and evasion attacks.
We verify the robustness of our method on the IEEE-13 bus feeder model against a diverse set of poisoning and evasion attack scenarios.
arXiv Detail & Related papers (2024-05-05T16:24:30Z) - Model X-ray:Detecting Backdoored Models via Decision Boundary [62.675297418960355]
Backdoor attacks pose a significant security vulnerability for deep neural networks (DNNs)
We propose Model X-ray, a novel backdoor detection approach based on the analysis of illustrated two-dimensional (2D) decision boundaries.
Our approach includes two strategies focused on the decision areas dominated by clean samples and the concentration of label distribution.
arXiv Detail & Related papers (2024-02-27T12:42:07Z) - Demystifying Poisoning Backdoor Attacks from a Statistical Perspective [35.30533879618651]
Backdoor attacks pose a significant security risk due to their stealthy nature and potentially serious consequences.
This paper evaluates the effectiveness of any backdoor attack incorporating a constant trigger.
Our derived understanding applies to both discriminative and generative models.
arXiv Detail & Related papers (2023-10-16T19:35:01Z) - HINT: Healthy Influential-Noise based Training to Defend against Data
Poisoning Attacks [12.929357709840975]
We propose an efficient and robust training approach to defend against data poisoning attacks based on influence functions.
Using influence functions, we craft healthy noise that helps to harden the classification model against poisoning attacks.
Our empirical results show that HINT can efficiently protect deep learning models against the effect of both untargeted and targeted poisoning attacks.
arXiv Detail & Related papers (2023-09-15T17:12:19Z) - Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack [53.032801921915436]
Human Activity Recognition (HAR) has been employed in a wide range of applications, e.g. self-driving cars.
Recently, the robustness of skeleton-based HAR methods have been questioned due to their vulnerability to adversarial attacks.
We show such threats exist, even when the attacker only has access to the input/output of the model.
We propose the very first black-box adversarial attack approach in skeleton-based HAR called BASAR.
arXiv Detail & Related papers (2022-11-21T09:51:28Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - On Trace of PGD-Like Adversarial Attacks [77.75152218980605]
Adversarial attacks pose safety and security concerns for deep learning applications.
We construct Adrial Response Characteristics (ARC) features to reflect the model's gradient consistency.
Our method is intuitive, light-weighted, non-intrusive, and data-undemanding.
arXiv Detail & Related papers (2022-05-19T14:26:50Z) - Towards Understanding the Adversarial Vulnerability of Skeleton-based
Action Recognition [133.35968094967626]
Skeleton-based action recognition has attracted increasing attention due to its strong adaptability to dynamic circumstances.
With the help of deep learning techniques, it has also witnessed substantial progress and currently achieved around 90% accuracy in benign environment.
Research on the vulnerability of skeleton-based action recognition under different adversarial settings remains scant.
arXiv Detail & Related papers (2020-05-14T17:12:52Z) - Systematic Evaluation of Backdoor Data Poisoning Attacks on Image
Classifiers [6.352532169433872]
Backdoor data poisoning attacks have been demonstrated in computer vision research as a potential safety risk for machine learning (ML) systems.
Our work builds upon prior backdoor data-poisoning research for ML image classifiers.
We find that poisoned models are hard to detect through performance inspection alone.
arXiv Detail & Related papers (2020-04-24T02:58:22Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.