HyCoT: A Transformer-Based Autoencoder for Hyperspectral Image Compression
- URL: http://arxiv.org/abs/2408.08700v2
- Date: Thu, 14 Nov 2024 15:47:59 GMT
- Title: HyCoT: A Transformer-Based Autoencoder for Hyperspectral Image Compression
- Authors: Martin Hermann Paul Fuchs, Behnood Rasti, Begüm Demir,
- Abstract summary: Hyperspectral Compression Transformer (HyCoT) is a transformer-based autoencoder for pixelwise HSI compression.
Experimental results on the HySpecNet-11k dataset demonstrate that HyCoT surpasses the state of the art across various compression ratios by over 1 dB of PSNR.
- Score: 6.0163252984457145
- License:
- Abstract: The development of learning-based hyperspectral image (HSI) compression models has recently attracted significant interest. Existing models predominantly utilize convolutional filters, which capture only local dependencies. Furthermore,they often incur high training costs and exhibit substantial computational complexity. To address these limitations, in this paper we propose Hyperspectral Compression Transformer (HyCoT) that is a transformer-based autoencoder for pixelwise HSI compression. Additionally, we apply a simple yet effective training set reduction approach to accelerate the training process. Experimental results on the HySpecNet-11k dataset demonstrate that HyCoT surpasses the state of the art across various compression ratios by over 1 dB of PSNR with significantly reduced computational requirements. Our code and pre-trained weights are publicly available at https://git.tu-berlin.de/rsim/hycot .
Related papers
- UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Implicit Neural Representation (INR) networks have shown remarkable versatility due to their flexible compression ratios.
We introduce a codebook containing frequency domain information as a prior input to the INR network.
This enhances the representational power of INR and provides distinctive conditioning for different image blocks.
arXiv Detail & Related papers (2024-05-27T05:52:13Z) - Unifying Generation and Compression: Ultra-low bitrate Image Coding Via
Multi-stage Transformer [35.500720262253054]
This paper introduces a novel Unified Image Generation-Compression (UIGC) paradigm, merging the processes of generation and compression.
A key feature of the UIGC framework is the adoption of vector-quantized (VQ) image models for tokenization.
Experiments demonstrate the superiority of the proposed UIGC framework over existing codecs in perceptual quality and human perception.
arXiv Detail & Related papers (2024-03-06T14:27:02Z) - Activations and Gradients Compression for Model-Parallel Training [85.99744701008802]
We study how simultaneous compression of activations and gradients in model-parallel distributed training setup affects convergence.
We find that gradients require milder compression rates than activations.
Experiments also show that models trained with TopK perform well only when compression is also applied during inference.
arXiv Detail & Related papers (2024-01-15T15:54:54Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - High-Fidelity Variable-Rate Image Compression via Invertible Activation
Transformation [24.379052026260034]
We propose the Invertible Activation Transformation (IAT) module to tackle the issue of high-fidelity fine variable-rate image compression.
IAT and QLevel together give the image compression model the ability of fine variable-rate control while better maintaining the image fidelity.
Our method outperforms the state-of-the-art variable-rate image compression method by a large margin, especially after multiple re-encodings.
arXiv Detail & Related papers (2022-09-12T07:14:07Z) - The Devil Is in the Details: Window-based Attention for Image
Compression [58.1577742463617]
Most existing learned image compression models are based on Convolutional Neural Networks (CNNs)
In this paper, we study the effects of multiple kinds of attention mechanisms for local features learning, then introduce a more straightforward yet effective window-based local attention block.
The proposed window-based attention is very flexible which could work as a plug-and-play component to enhance CNN and Transformer models.
arXiv Detail & Related papers (2022-03-16T07:55:49Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - A Highly Effective Low-Rank Compression of Deep Neural Networks with
Modified Beam-Search and Modified Stable Rank [3.0938904602244355]
We propose a low-rank compression method that utilizes a modified beam-search for an automatic rank selection and a modified stable rank for a compression-friendly training.
The performance of BSR in terms of accuracy and compression ratio trade-off curve turns out to be superior to the previously known low-rank compression methods.
arXiv Detail & Related papers (2021-11-30T07:36:23Z) - Slimmable Compressive Autoencoders for Practical Neural Image
Compression [20.715312224456138]
We propose slimmable compressive autoencoders (SlimCAEs) for practical image compression.
SlimCAEs are highly flexible models that provide excellent rate-distortion performance, variable rate, and dynamic adjustment of memory, computational cost and latency.
arXiv Detail & Related papers (2021-03-29T16:12:04Z) - An Efficient Statistical-based Gradient Compression Technique for
Distributed Training Systems [77.88178159830905]
Sparsity-Inducing Distribution-based Compression (SIDCo) is a threshold-based sparsification scheme that enjoys similar threshold estimation quality to deep gradient compression (DGC)
Our evaluation shows SIDCo speeds up training by up to 41:7%, 7:6%, and 1:9% compared to the no-compression baseline, Topk, and DGC compressors, respectively.
arXiv Detail & Related papers (2021-01-26T13:06:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.