論文の概要: A Novel Buffered Federated Learning Framework for Privacy-Driven Anomaly Detection in IIoT
- arxiv url: http://arxiv.org/abs/2408.08722v1
- Date: Fri, 16 Aug 2024 13:01:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 15:24:50.785679
- Title: A Novel Buffered Federated Learning Framework for Privacy-Driven Anomaly Detection in IIoT
- Title(参考訳): IIoTにおけるプライバシ駆動型異常検出のためのバッファリングフェデレーション学習フレームワーク
- Authors: Samira Kamali Poorazad, Chafika Benzaid, Tarik Taleb,
- Abstract要約: 異種IIoT環境における異常検出のための同相暗号を利用したバッファリングFL(BFL)フレームワークを提案する。
BFLは、トラグラー効果と通信ボトルネックの両方を軽減するために、新しい重み付き平均時間アプローチを利用する。
その結果, 最先端FL法と比較してBFLの方が優れ, 精度と収束速度が向上した。
- 参考スコア(独自算出の注目度): 11.127334284392676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Industrial Internet of Things (IIoT) is highly sensitive to data privacy and cybersecurity threats. Federated Learning (FL) has emerged as a solution for preserving privacy, enabling private data to remain on local IIoT clients while cooperatively training models to detect network anomalies. However, both synchronous and asynchronous FL architectures exhibit limitations, particularly when dealing with clients with varying speeds due to data heterogeneity and resource constraints. Synchronous architecture suffers from straggler effects, while asynchronous methods encounter communication bottlenecks. Additionally, FL models are prone to adversarial inference attacks aimed at disclosing private training data. To address these challenges, we propose a Buffered FL (BFL) framework empowered by homomorphic encryption for anomaly detection in heterogeneous IIoT environments. BFL utilizes a novel weighted average time approach to mitigate both straggler effects and communication bottlenecks, ensuring fairness between clients with varying processing speeds through collaboration with a buffer-based server. The performance results, derived from two datasets, show the superiority of BFL compared to state-of-the-art FL methods, demonstrating improved accuracy and convergence speed while enhancing privacy preservation.
- Abstract(参考訳): 産業用IoT(Industrial Internet of Things)は、データプライバシとサイバーセキュリティの脅威に非常に敏感である。
フェデレートラーニング(FL)は、プライバシ保護のためのソリューションとして登場し、プライベートデータをローカルIIoTクライアントに保持するとともに、協調トレーニングモデルによるネットワーク異常の検出を可能にしている。
しかし、同期と非同期両方のFLアーキテクチャは、特にデータの不均一性やリソースの制約により、クライアントを様々な速度で処理する場合に制限がある。
同期アーキテクチャはストラグラー効果に悩まされ、非同期メソッドは通信ボトルネックに遭遇する。
さらに、FLモデルは、プライベートトレーニングデータを開示する目的で、敵の推論攻撃をしがちである。
これらの課題に対処するために、異種IIoT環境における異常検出のための同相暗号によって強化されたバッファ付きFL(BFL)フレームワークを提案する。
BFLは、トラグラー効果と通信ボトルネックを緩和し、バッファベースのサーバとの協調を通じて、処理速度の異なるクライアント間の公平性を確保するために、新しい重み付き平均時間アプローチを利用する。
2つのデータセットから得られた性能結果は、最先端のFL法と比較してBFLの優位性を示し、プライバシー保護を向上しながら精度と収束速度を改善した。
関連論文リスト
- ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks [26.002975401820887]
Federated Learning(FL)は、プライバシ対応アプリケーション用に設計された分散学習フレームワークである。
従来のFLは、プレーンモデルのアップデートがサーバに送信されると、機密性の高いクライアントデータを露出するリスクにアプローチする。
GoogleのSecure Aggregation(SecAgg)プロトコルは、二重マスキング技術を使用することで、この脅威に対処する。
通信・計算効率の高いセキュアアグリゲーション手法であるACCESS-FLを提案する。
論文 参考訳(メタデータ) (2024-09-03T09:03:38Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
フェデレートラーニング(Federated Learning、FL)は、プライバシ保護のための協調学習フレームワークである。
既存のFLシステムはトレーニングアルゴリズムとしてフェデレーション平均(FedAvg)を採用するのが一般的である。
差分プライバシーを保証する通信効率のよいFLトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-07T06:07:04Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
我々は、複数のユーザ/エージェントからエッジサーバへの勾配更新をOtA(Over-the-Air)で送信することで、無線フェデレーション学習のプライバシー面を考察する。
従来の摂動に基づく手法は、トレーニングの精度を犠牲にしてプライバシー保護を提供する。
本研究では,エッジサーバにおけるプライバシリークの最小化とモデル精度の低下を目標とする。
論文 参考訳(メタデータ) (2022-10-05T13:13:35Z) - FedPerm: Private and Robust Federated Learning by Parameter Permutation [2.406359246841227]
Federated Learning(FL)は、相互に信頼できないクライアントが共通の機械学習モデルを共同でトレーニングできるようにする分散学習パラダイムである。
クライアントデータのプライバシはFLで最重要である。同時に、モデルが敵のクライアントからの攻撃から保護されなければならない。
我々は、データプライバシを増幅する新しいモデル内パラメータシャッフル技術と、クライアントのモデル更新の暗号化集約を可能にするPrivate Information Retrieval(PIR)ベースの技術を組み合わせることで、これらの問題に対処する新しいFLアルゴリズムであるFedPermを提案する。
論文 参考訳(メタデータ) (2022-08-16T19:40:28Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
フェデレートラーニング(FL)は、プライバシを保存する分散機械学習フレームワークとして多くの注目を集めている。
本稿では、トラグラー問題を緩和するために、SCFL(Coded Federated Learning)というコード付きフェデレーション学習フレームワークを提案する。
我々は、相互情報差分プライバシー(MI-DP)によるプライバシー保証を特徴付け、連合学習における収束性能を分析する。
論文 参考訳(メタデータ) (2022-01-25T04:43:29Z) - Dubhe: Towards Data Unbiasedness with Homomorphic Encryption in
Federated Learning Client Selection [16.975086164684882]
Federated Learning(FL)は、クライアントが自身のローカルデータ上でモデルを協調的にトレーニングできる分散機械学習パラダイムである。
FLの性能劣化の原因を数学的に検証し,様々なデータセット上でのFLの性能について検討する。
そこで我々はDubheという名のプラグイン可能なシステムレベルのクライアント選択手法を提案し,HEの助けを借りてクライアントを積極的にトレーニングに参加させ,プライバシを保護できるようにする。
論文 参考訳(メタデータ) (2021-09-08T13:00:46Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
フェデレートラーニング(FL)は、グローバル機械学習モデルをトレーニングするためのソリューションを提供する。
FLは、クライアントデータの分散が非IIDであるときに性能劣化に悩まされる。
本稿では,この劣化に対処するために,新しい適応トレーニングアルゴリズムであるtextttAdaFL$を提案する。
論文 参考訳(メタデータ) (2021-08-12T14:18:05Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
フェデレートラーニング(FL)では、モデルトレーニングはクライアントに分散し、ローカルモデルは中央サーバによって集約される。
本稿では,各クライアントの差分プライバシ(DP)要件だけでなく,全体としてのトレーニング性能に制約された無線チャネル上でのFLトレーニング遅延を最小限に抑えることを目的とする。
論文 参考訳(メタデータ) (2021-06-20T13:51:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。