Micro-splatting: Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2504.05740v1
- Date: Tue, 08 Apr 2025 07:15:58 GMT
- Title: Micro-splatting: Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting
- Authors: Jee Won Lee, Hansol Lim, Sooyeun Yang, Jongseong Choi,
- Abstract summary: This work implements an adaptive densification strategy that dynamically refines regions with high image gradients.<n>It results in a denser and more detailed gaussian means where needed, without sacrificing rendering efficiency.
- Score: 0.3749861135832072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in 3D Gaussian Splatting have achieved impressive scalability and real-time rendering for large-scale scenes but often fall short in capturing fine-grained details. Conventional approaches that rely on relatively large covariance parameters tend to produce blurred representations, while directly reducing covariance sizes leads to sparsity. In this work, we introduce Micro-splatting (Maximizing Isotropic Constraints for Refined Optimization in 3D Gaussian Splatting), a novel framework designed to overcome these limitations. Our approach leverages a covariance regularization term to penalize excessively large Gaussians to ensure each splat remains compact and isotropic. This work implements an adaptive densification strategy that dynamically refines regions with high image gradients by lowering the splitting threshold, followed by loss function enhancement. This strategy results in a denser and more detailed gaussian means where needed, without sacrificing rendering efficiency. Quantitative evaluations using metrics such as L1, L2, PSNR, SSIM, and LPIPS, alongside qualitative comparisons demonstrate that our method significantly enhances fine-details in 3D reconstructions.
Related papers
- Second-order Optimization of Gaussian Splats with Importance Sampling [51.95046424364725]
3D Gaussian Splatting (3DGS) is widely used for novel view rendering due to its high quality and fast inference time.
We propose a novel second-order optimization strategy based on Levenberg-Marquardt (LM) and Conjugate Gradient (CG)
Our method achieves a $3times$ speedup over standard LM and outperforms Adam by $6times$ when the Gaussian count is low.
arXiv Detail & Related papers (2025-04-17T12:52:08Z) - FreeSplat++: Generalizable 3D Gaussian Splatting for Efficient Indoor Scene Reconstruction [50.534213038479926]
FreeSplat++ is an alternative approach to large-scale indoor whole-scene reconstruction.<n>Our method with depth-regularized per-scene fine-tuning demonstrates substantial improvements in reconstruction accuracy and a notable reduction in training time.
arXiv Detail & Related papers (2025-03-29T06:22:08Z) - ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes [81.48624894781257]
3D Gaussian Splatting (3DGS) has made significant strides in novel view synthesis but is limited by the substantial number of Gaussian primitives required.<n>Recent methods address this issue by compressing the storage size of densified Gaussians, yet fail to preserve rendering quality and efficiency.<n>We propose ProtoGS to learn Gaussian prototypes to represent Gaussian primitives, significantly reducing the total Gaussian amount without sacrificing visual quality.
arXiv Detail & Related papers (2025-03-21T18:55:14Z) - Uncertainty-Aware Normal-Guided Gaussian Splatting for Surface Reconstruction from Sparse Image Sequences [21.120659841877508]
3D Gaussian Splatting (3DGS) has achieved impressive rendering performance in novel view synthesis.<n>We propose Uncertainty-aware Normal-Guided Gaussian Splatting (UNG-GS) to quantify geometric uncertainty within the 3DGS pipeline.<n>UNG-GS significantly outperforms state-of-the-art methods in both sparse and dense sequences.
arXiv Detail & Related papers (2025-03-14T08:18:12Z) - DyGASR: Dynamic Generalized Exponential Splatting with Surface Alignment for Accelerated 3D Mesh Reconstruction [1.2891210250935148]
We propose DyGASR, which utilizes generalized exponential function instead of traditional 3D Gaussian to decrease the number of particles.
We also introduce Generalized Surface Regularization (GSR), which reduces the smallest scaling vector of each point cloud to zero.
Our approach surpasses existing 3DGS-based mesh reconstruction methods, demonstrating a 25% increase in speed, and a 30% reduction in memory usage.
arXiv Detail & Related papers (2024-11-14T03:19:57Z) - Correspondence-Guided SfM-Free 3D Gaussian Splatting for NVS [52.3215552448623]
Novel View Synthesis (NVS) without Structure-from-Motion (SfM) pre-processed camera poses are crucial for promoting rapid response capabilities and enhancing robustness against variable operating conditions.
Recent SfM-free methods have integrated pose optimization, designing end-to-end frameworks for joint camera pose estimation and NVS.
Most existing works rely on per-pixel image loss functions, such as L2 loss.
In this study, we propose a correspondence-guided SfM-free 3D Gaussian splatting for NVS.
arXiv Detail & Related papers (2024-08-16T13:11:22Z) - CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
We propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS)
We exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms.
Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality.
arXiv Detail & Related papers (2024-04-15T04:50:39Z) - End-to-End Rate-Distortion Optimized 3D Gaussian Representation [33.20840558425759]
We formulate the compact 3D Gaussian learning as an end-to-end Rate-Distortion Optimization problem.
We introduce dynamic pruning and entropy-constrained vector quantization (ECVQ) that optimize the rate and distortion at the same time.
We verify our method on both real and synthetic scenes, showcasing that RDO-Gaussian greatly reduces the size of 3D Gaussian over 40x.
arXiv Detail & Related papers (2024-04-09T14:37:54Z) - StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering [42.91830228828405]
We present a novel hierarchicalization approach that culls splats with minimal processing overhead.
Our approach is only 4% slower on average than the original Gaussian Splatting.
rendering performance is nearly doubled, making our approach 1.6x faster than the original Gaussian Splatting.
arXiv Detail & Related papers (2024-02-01T11:46:44Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.