論文の概要: Pessimistic Iterative Planning for Robust POMDPs
- arxiv url: http://arxiv.org/abs/2408.08770v1
- Date: Fri, 16 Aug 2024 14:25:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 15:14:04.795322
- Title: Pessimistic Iterative Planning for Robust POMDPs
- Title(参考訳): ロバストPOMDPの悲観的反復計画
- Authors: Maris F. L. Galesloot, Marnix Suilen, Thiago D. Simão, Steven Carr, Matthijs T. J. Spaan, Ufuk Topcu, Nils Jansen,
- Abstract要約: 堅牢なPOMDPのポリシーは、部分的な可観測性のためにメモリベースでなければならない。
我々は,堅牢なPOMDPのための堅牢なメモリベースのポリシーを見出すための悲観的反復計画(PIP)フレームワークを提案する。
それぞれ、rFSCNetは、敵POMDPに最適化された監督ポリシーを使用してトレーニングされたリカレントニューラルネットワークを介して、FSCを見つける。
- 参考スコア(独自算出の注目度): 33.73695799565586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robust partially observable Markov decision processes (robust POMDPs) extend classical POMDPs to handle additional uncertainty on the transition and observation probabilities via so-called uncertainty sets. Policies for robust POMDPs must not only be memory-based to account for partial observability but also robust against model uncertainty to account for the worst-case instances from the uncertainty sets. We propose the pessimistic iterative planning (PIP) framework, which finds robust memory-based policies for robust POMDPs. PIP alternates between two main steps: (1) selecting an adversarial (non-robust) POMDP via worst-case probability instances from the uncertainty sets; and (2) computing a finite-state controller (FSC) for this adversarial POMDP. We evaluate the performance of this FSC on the original robust POMDP and use this evaluation in step (1) to select the next adversarial POMDP. Within PIP, we propose the rFSCNet algorithm. In each iteration, rFSCNet finds an FSC through a recurrent neural network trained using supervision policies optimized for the adversarial POMDP. The empirical evaluation in four benchmark environments showcases improved robustness against a baseline method in an ablation study and competitive performance compared to a state-of-the-art robust POMDP solver.
- Abstract(参考訳): ロバストな部分的に観測可能なマルコフ決定過程 (robust POMDPs) は古典的なPOMDPを拡張して、いわゆる不確実性集合による遷移と観測確率に関するさらなる不確実性を扱う。
堅牢なPOMDPのポリシーは、部分的な可観測性を考慮するためにメモリベースであるだけでなく、不確実性セットから最悪のケースを考慮に入れるために、モデルの不確実性に対して堅牢である必要がある。
我々は,堅牢なPOMDPに対して,堅牢なメモリベースのポリシーを見出すための悲観的反復計画(PIP)フレームワークを提案する。
PIPは、(1)不確実性集合から最悪のケースの確率インスタンスを介して逆(非ローバスト)のPOMDPを選択すること、(2)この逆のPOMDPに対して有限状態コントローラ(FSC)を計算すること、の2つの主要なステップを交互に行う。
元の頑健なPOMDPに対して,このFCCの性能を評価し,ステップ(1)で次の逆POMDPを選択する。
PIP内ではrFSCNetアルゴリズムを提案する。
各イテレーションにおいて、rFSCNetは、敵POMDPに最適化された監督ポリシーを使用してトレーニングされたリカレントニューラルネットワークを介して、FSCを見つける。
4つのベンチマーク環境における実験的な評価は, 最先端の頑健なPOMDPソルバと比較して, アブレーション試験におけるベースライン法に対するロバスト性の向上と競争性能を実証している。
関連論文リスト
- Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
我々は,非漸近収束を伴う最適決定主義政策を求めるための決定主義的政策勾配原始双対法を開発した。
D-PGPDの一次-双対反復は、最適正則化原始-双対にサブ線形速度で収束することが証明された。
我々の知る限り、これは連続空間制約型MDPに対する決定論的ポリシー探索法を提案する最初の研究であると思われる。
論文 参考訳(メタデータ) (2024-08-19T14:11:04Z) - Recursively-Constrained Partially Observable Markov Decision Processes [13.8724466775267]
C-POMDPは連続的な決定ステップに対して最適なサブ構造特性に反することを示す。
C-POMDPのオンライン再計画は、この違反による不整合のため、しばしば効果がない。
本稿では,C-POMDPに履歴に依存したコスト制約を課す再帰的制約付きPOMDPを提案する。
論文 参考訳(メタデータ) (2023-10-15T00:25:07Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Optimality Guarantees for Particle Belief Approximation of POMDPs [55.83001584645448]
部分的に観測可能なマルコフ決定プロセス(POMDP)は、現実の意思決定と制御の問題に対する柔軟な表現を提供する。
POMDPは、特に状態と観測空間が連続的またはハイブリッドである場合、解決するのが非常に難しい。
本稿では,これらのアルゴリズムが使用する粒子フィルタリング手法の近似誤差を特徴付ける理論を提案する。
論文 参考訳(メタデータ) (2022-10-10T21:11:55Z) - Robust Anytime Learning of Markov Decision Processes [8.799182983019557]
データ駆動型アプリケーションでは、限られたデータから正確な確率を導き出すと統計的エラーが発生する。
不確実なMDP(uMDP)は正確な確率を必要としないが、遷移においていわゆる不確実性集合を用いる。
本稿では,ベイズ的推論スキームとロバストポリシーの計算を組み合わせた,頑健な任意の時間学習手法を提案する。
論文 参考訳(メタデータ) (2022-05-31T14:29:55Z) - Reinforcement Learning with a Terminator [80.34572413850186]
我々は, TerMDP のパラメータを学習し, 推定問題の構造を活用し, 状態ワイドな信頼境界を提供する。
我々はこれらを用いて証明可能な効率のよいアルゴリズムを構築し、終端を考慮し、その後悔を抑える。
論文 参考訳(メタデータ) (2022-05-30T18:40:28Z) - Efficient Policy Iteration for Robust Markov Decision Processes via
Regularization [49.05403412954533]
ロバストな意思決定プロセス(MDP)は、システムのダイナミクスが変化している、あるいは部分的にしか知られていない決定問題をモデル化するためのフレームワークを提供する。
最近の研究は、長方形長方形の$L_p$頑健なMDPと正規化されたMDPの等価性を確立し、標準MDPと同じレベルの効率を享受する規則化されたポリシー反復スキームを導出した。
本研究では、政策改善のステップに焦点をあて、欲求政策と最適なロバストなベルマン作用素のための具体的な形式を導出する。
論文 参考訳(メタデータ) (2022-05-28T04:05:20Z) - Robust Entropy-regularized Markov Decision Processes [23.719568076996662]
本稿では,ER-MDPモデルのロバストバージョンについて検討する。
我々は, ER-MDPと頑健な非正規化MDPモデルに係わる重要な特性も設定に保たれることを示す。
私たちは、我々のフレームワークと結果を、価値や(修正された)ポリシーを含む異なるアルゴリズムのスキームに統合する方法を示します。
論文 参考訳(メタデータ) (2021-12-31T09:50:46Z) - Risk-Averse Decision Making Under Uncertainty [18.467950783426947]
不確実性条件下での意思決定は、マルコフ決定プロセス(MDP)または部分的に観測可能なMDP(POMDP)を介して記述することができる。
本稿では、動的コヒーレントリスク対策の観点から、MDPとPMDPのポリシーを目的と制約で設計する問題について考察する。
論文 参考訳(メタデータ) (2021-09-09T07:52:35Z) - Rule-based Shielding for Partially Observable Monte-Carlo Planning [78.05638156687343]
一部観測可能なモンテカルロ計画(POMCP)への2つの貢献を提案する。
1つ目は、POMCPが選択した予期しない行動を、タスクのエキスパートの事前知識に関して識別する方法です。
2つ目は、POMCPが予期せぬ動作を選択するのを防ぐ遮蔽アプローチである。
我々は,pomdpsの標準ベンチマークであるtigerに対するアプローチと,移動ロボットナビゲーションにおける速度規制に関する実世界問題を評価する。
論文 参考訳(メタデータ) (2021-04-28T14:23:38Z) - Optimal Inspection and Maintenance Planning for Deteriorating Structural
Components through Dynamic Bayesian Networks and Markov Decision Processes [0.0]
部分的に観測可能なマルコフ決定過程(POMDPs)は、不確実な行動結果と観測下での最適制御のための数学的方法論を提供する。
本稿では, 有限地平線POMDPを構造的信頼性の文脈で開発するための定式化について述べる。
その結果,従来の問題設定においても,POMDPのコストは従来に比べて大幅に低減した。
論文 参考訳(メタデータ) (2020-09-09T20:03:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。