論文の概要: Pessimistic Iterative Planning for Robust POMDPs
- arxiv url: http://arxiv.org/abs/2408.08770v3
- Date: Tue, 12 Nov 2024 13:50:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:18:22.071084
- Title: Pessimistic Iterative Planning for Robust POMDPs
- Title(参考訳): ロバストPOMDPの悲観的反復計画
- Authors: Maris F. L. Galesloot, Marnix Suilen, Thiago D. Simão, Steven Carr, Matthijs T. J. Spaan, Ufuk Topcu, Nils Jansen,
- Abstract要約: 本稿では,堅牢なメモリベースのPOMDPポリシを計算するための悲観的反復計画(PIP)フレームワークを提案する。
PIP内では、悲観的POMDPに最適化された監督ポリシーを用いて、繰り返しニューラルネットワークを介してFSCを見つけるrFSCNetアルゴリズムを提案する。
各イテレーションでrFSCNetは、悲観的POMDPに最適化された監督ポリシーを使用して、繰り返しニューラルネットワークを介してFSCを見つける。
- 参考スコア(独自算出の注目度): 33.73695799565586
- License:
- Abstract: Robust POMDPs extend classical POMDPs to handle model uncertainty. Specifically, robust POMDPs exhibit so-called uncertainty sets on the transition and observation models, effectively defining ranges of probabilities. Policies for robust POMDPs must be (1) memory-based to account for partial observability and (2) robust against model uncertainty to account for the worst-case instances from the uncertainty sets. To compute such robust memory-based policies, we propose the pessimistic iterative planning (PIP) framework, which alternates between two main steps: (1) selecting a pessimistic (non-robust) POMDP via worst-case probability instances from the uncertainty sets; and (2) computing a finite-state controller (FSC) for this pessimistic POMDP. We evaluate the performance of this FSC on the original robust POMDP and use this evaluation in step (1) to select the next pessimistic POMDP. Within PIP, we propose the rFSCNet algorithm. In each iteration, rFSCNet finds an FSC through a recurrent neural network by using supervision policies optimized for the pessimistic POMDP. The empirical evaluation in four benchmark environments showcases improved robustness against several baseline methods and competitive performance compared to a state-of-the-art robust POMDP solver.
- Abstract(参考訳): ロバストなPOMDPはモデル不確実性を扱うために古典的なPOMDPを拡張する。
具体的には、ロバストなPOMDPは遷移モデルと観測モデルに関するいわゆる不確実性集合を示し、確率の範囲を効果的に定義する。
堅牢なPOMDPのポリシーは、(1)部分観測可能性を考慮したメモリベース、(2)不確実性セットから最悪のケースを考慮に入れたモデル不確実性に対するロバストでなければならない。
このようなロバストなメモリベースのポリシーを計算するために,1)不確実性集合から最悪の確率インスタンスを経由した悲観的(非破壊的)POMDPの選択,2)この悲観的POMDPのための有限状態コントローラ(FSC)の計算という2つの主要なステップを交互に行う悲観的反復計画(PIP)フレームワークを提案する。
元の頑健なPOMDP上でのこのFSCの性能を評価し、ステップ(1)でこの評価を用いて次の悲観的POMDPを選択する。
PIP内ではrFSCNetアルゴリズムを提案する。
各イテレーションでrFSCNetは、悲観的POMDPに最適化された監督ポリシーを使用して、繰り返しニューラルネットワークを介してFSCを見つける。
4つのベンチマーク環境での実証的な評価は、最先端の堅牢なPOMDPソルバと比較して、いくつかのベースライン手法に対する堅牢性と競争性能の向上を示している。
関連論文リスト
- Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
我々は,POMDPパラメータを信念に基づくポリシを用いて収集したサンプルから学習することのできる観測・認識スペクトル(OAS)推定手法を提案する。
提案するOAS-UCRLアルゴリズムに対して,OASプロシージャの整合性を示し,$mathcalO(sqrtT log(T)$の残差保証を証明した。
論文 参考訳(メタデータ) (2024-10-02T08:46:34Z) - Monte Carlo Planning for Stochastic Control on Constrained Markov Decision Processes [1.445706856497821]
本研究は,MDP フレームワークである textttSD-MDP を定義し,MDP の遷移と報酬ダイナミクスの因果構造を解析する。
モンテカルロサンプリングから独立な値推定を行うことにより、最適ポリシの下での値関数の推定誤差に関する理論的保証を導出する。
論文 参考訳(メタデータ) (2024-06-23T16:22:40Z) - Recursively-Constrained Partially Observable Markov Decision Processes [13.8724466775267]
C-POMDPは連続的な決定ステップに対して最適なサブ構造特性に反することを示す。
C-POMDPのオンライン再計画は、この違反による不整合のため、しばしば効果がない。
本稿では,C-POMDPに履歴に依存したコスト制約を課す再帰的制約付きPOMDPを提案する。
論文 参考訳(メタデータ) (2023-10-15T00:25:07Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Fine-Tuning Language Models with Advantage-Induced Policy Alignment [80.96507425217472]
大規模言語モデルと人間の嗜好を整合させる新しいアルゴリズムを提案する。
言語タスクにおいてPPOを常に上回り、大きなマージンを持つことを示す。
また,損失関数の設計を支援する理論的正当性も提供する。
論文 参考訳(メタデータ) (2023-06-04T01:59:40Z) - Double Pessimism is Provably Efficient for Distributionally Robust
Offline Reinforcement Learning: Generic Algorithm and Robust Partial Coverage [15.858892479232656]
頑健なオフライン強化学習(ロバストオフラインRL)について検討する。
我々は、Douubly Pessimistic Model-based Policy Optimization(P2MPO$)と呼ばれる汎用アルゴリズムフレームワークを提案する。
P2MPO$は$tildemathcalO(n-1/2)$コンバーゼンスレートで、$n$はデータセットサイズである。
論文 参考訳(メタデータ) (2023-05-16T17:58:05Z) - Optimality Guarantees for Particle Belief Approximation of POMDPs [55.83001584645448]
部分的に観測可能なマルコフ決定プロセス(POMDP)は、現実の意思決定と制御の問題に対する柔軟な表現を提供する。
POMDPは、特に状態と観測空間が連続的またはハイブリッドである場合、解決するのが非常に難しい。
本稿では,これらのアルゴリズムが使用する粒子フィルタリング手法の近似誤差を特徴付ける理論を提案する。
論文 参考訳(メタデータ) (2022-10-10T21:11:55Z) - Robust Entropy-regularized Markov Decision Processes [23.719568076996662]
本稿では,ER-MDPモデルのロバストバージョンについて検討する。
我々は, ER-MDPと頑健な非正規化MDPモデルに係わる重要な特性も設定に保たれることを示す。
私たちは、我々のフレームワークと結果を、価値や(修正された)ポリシーを含む異なるアルゴリズムのスキームに統合する方法を示します。
論文 参考訳(メタデータ) (2021-12-31T09:50:46Z) - Rule-based Shielding for Partially Observable Monte-Carlo Planning [78.05638156687343]
一部観測可能なモンテカルロ計画(POMCP)への2つの貢献を提案する。
1つ目は、POMCPが選択した予期しない行動を、タスクのエキスパートの事前知識に関して識別する方法です。
2つ目は、POMCPが予期せぬ動作を選択するのを防ぐ遮蔽アプローチである。
我々は,pomdpsの標準ベンチマークであるtigerに対するアプローチと,移動ロボットナビゲーションにおける速度規制に関する実世界問題を評価する。
論文 参考訳(メタデータ) (2021-04-28T14:23:38Z) - Near Optimality of Finite Memory Feedback Policies in Partially Observed
Markov Decision Processes [0.0]
システム力学と測定チャネルモデルが知られていると仮定したPOMDPの計画問題について検討する。
軽度非線形フィルタ安定性条件下で近似的信念モデルに対する最適ポリシーを求める。
また、有限ウィンドウメモリサイズと近似誤差境界を関連づけた収束結果のレートを確立する。
論文 参考訳(メタデータ) (2020-10-15T00:37:51Z) - Exploiting Submodular Value Functions For Scaling Up Active Perception [60.81276437097671]
アクティブな知覚タスクでは、エージェントは1つ以上の隠れ変数の不確実性を減少させる感覚行動を選択することを目的としている。
部分的に観測可能なマルコフ決定過程(POMDP)は、そのような問題に対する自然なモデルを提供する。
エージェントが利用できるセンサーの数が増えるにつれて、POMDP計画の計算コストは指数関数的に増加する。
論文 参考訳(メタデータ) (2020-09-21T09:11:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。