Shapley Marginal Surplus for Strong Models
- URL: http://arxiv.org/abs/2408.08845v1
- Date: Fri, 16 Aug 2024 17:06:07 GMT
- Title: Shapley Marginal Surplus for Strong Models
- Authors: Daniel de Marchi, Michael Kosorok, Scott de Marchi,
- Abstract summary: We show that while Shapley values might be accurate explainers of model predictions, machine learning models themselves are often poor explainers of the true data-generating process (DGP)
We introduce a novel variable importance algorithm, Shapley Marginal Surplus for Strong Models, that samples the space of possible models to come up with an inferential measure of feature importance.
- Score: 0.9831489366502301
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shapley values have seen widespread use in machine learning as a way to explain model predictions and estimate the importance of covariates. Accurately explaining models is critical in real-world models to both aid in decision making and to infer the properties of the true data-generating process (DGP). In this paper, we demonstrate that while model-based Shapley values might be accurate explainers of model predictions, machine learning models themselves are often poor explainers of the DGP even if the model is highly accurate. Particularly in the presence of interrelated or noisy variables, the output of a highly predictive model may fail to account for these relationships. This implies explanations of a trained model's behavior may fail to provide meaningful insight into the DGP. In this paper we introduce a novel variable importance algorithm, Shapley Marginal Surplus for Strong Models, that samples the space of possible models to come up with an inferential measure of feature importance. We compare this method to other popular feature importance methods, both Shapley-based and non-Shapley based, and demonstrate significant outperformance in inferential capabilities relative to other methods.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Explainability of Machine Learning Models under Missing Data [2.880748930766428]
Missing data is a prevalent issue that can significantly impair model performance and interpretability.
This paper briefly summarizes the development of the field of missing data and investigates the effects of various imputation methods on the calculation of Shapley values.
arXiv Detail & Related papers (2024-06-29T11:31:09Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
We develop an amortized model that directly predicts each input feature's Shapley Value without additional model evaluations.
Experimental results on two text classification datasets demonstrate that our amortized model estimates Shapley Values accurately with up to 60 times speedup.
arXiv Detail & Related papers (2023-05-31T16:19:13Z) - Shapley variable importance cloud for machine learning models [4.1359299555083595]
Recently developed Shapley variable importance cloud (ShapleyVIC) provides comprehensive and robust variable importance assessments.
benefits of ShapleyVIC inference have been demonstrated in real-life prediction tasks.
ShapleyVIC implementation for machine learning models to enable wider applications.
arXiv Detail & Related papers (2022-12-16T09:45:22Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - Shapley variable importance clouds for interpretable machine learning [2.830197032154301]
We propose a Shapley variable importance cloud that pools information across good models to avoid biased assessments in SHAP analyses of final models.
We demonstrate the additional insights gain compared to conventional explanations and Dong and Rudin's method using criminal justice and electronic medical records data.
arXiv Detail & Related papers (2021-10-06T03:41:04Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - Predictive and Causal Implications of using Shapley Value for Model
Interpretation [6.744385328015561]
We established the relationship between Shapley value and conditional independence, a key concept in both predictive and causal modeling.
Our results indicate that, eliminating a variable with high Shapley value from a model do not necessarily impair predictive performance.
More importantly, Shapley value of a variable do not reflect their causal relationship with the target of interest.
arXiv Detail & Related papers (2020-08-12T01:08:08Z) - Shapley explainability on the data manifold [10.439136407307048]
General implementations of Shapley explainability make an untenable assumption: that the model's features are uncorrelated.
One solution, based on generative modelling, provides flexible access to data imputations.
The other directly learns the Shapley value-function, providing performance and stability at the cost of flexibility.
arXiv Detail & Related papers (2020-06-01T21:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.