Explainability of Machine Learning Models under Missing Data
- URL: http://arxiv.org/abs/2407.00411v1
- Date: Sat, 29 Jun 2024 11:31:09 GMT
- Title: Explainability of Machine Learning Models under Missing Data
- Authors: Tuan L. Vo, Thu Nguyen, Hugo L. Hammer, Michael A. Riegler, Pal Halvorsen,
- Abstract summary: Missing data is a prevalent issue that can significantly impair model performance and interpretability.
This paper briefly summarizes the development of the field of missing data and investigates the effects of various imputation methods on the calculation of Shapley values.
- Score: 2.880748930766428
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Missing data is a prevalent issue that can significantly impair model performance and interpretability. This paper briefly summarizes the development of the field of missing data with respect to Explainable Artificial Intelligence and experimentally investigates the effects of various imputation methods on the calculation of Shapley values, a popular technique for interpreting complex machine learning models. We compare different imputation strategies and assess their impact on feature importance and interaction as determined by Shapley values. Moreover, we also theoretically analyze the effects of missing values on Shapley values. Importantly, our findings reveal that the choice of imputation method can introduce biases that could lead to changes in the Shapley values, thereby affecting the interpretability of the model. Moreover, and that a lower test prediction mean square error (MSE) may not imply a lower MSE in Shapley values and vice versa. Also, while Xgboost is a method that could handle missing data directly, using Xgboost directly on missing data can seriously affect interpretability compared to imputing the data before training Xgboost. This study provides a comprehensive evaluation of imputation methods in the context of model interpretation, offering practical guidance for selecting appropriate techniques based on dataset characteristics and analysis objectives. The results underscore the importance of considering imputation effects to ensure robust and reliable insights from machine learning models.
Related papers
- F-Fidelity: A Robust Framework for Faithfulness Evaluation of Explainable AI [15.314388210699443]
Fine-tuned Fidelity F-Fidelity is a robust evaluation framework for XAI.
We show that F-Fidelity significantly improves upon prior evaluation metrics in recovering the ground-truth ranking of explainers.
We also show that given a faithful explainer, F-Fidelity metric can be used to compute the sparsity of influential input components.
arXiv Detail & Related papers (2024-10-03T20:23:06Z) - Common Steps in Machine Learning Might Hinder The Explainability Aims in Medicine [0.0]
This paper discusses the steps of the data preprocessing in machine learning and their impacts on the explainability and interpretability of the model.
It is found the steps improve the accuracy of the model, but they might hinder the explainability of the model if they are not carefully considered especially in medicine.
arXiv Detail & Related papers (2024-08-30T12:09:14Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Shapley Marginal Surplus for Strong Models [0.9831489366502301]
We show that while Shapley values might be accurate explainers of model predictions, machine learning models themselves are often poor explainers of the true data-generating process (DGP)
We introduce a novel variable importance algorithm, Shapley Marginal Surplus for Strong Models, that samples the space of possible models to come up with an inferential measure of feature importance.
arXiv Detail & Related papers (2024-08-16T17:06:07Z) - The Effect of Balancing Methods on Model Behavior in Imbalanced
Classification Problems [4.370097023410272]
Imbalanced data poses a challenge in classification as model performance is affected by insufficient learning from minority classes.
This study addresses a more challenging aspect of balancing methods - their impact on model behavior.
To capture these changes, Explainable Artificial Intelligence tools are used to compare models trained on datasets before and after balancing.
arXiv Detail & Related papers (2023-06-30T22:25:01Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
Building trustworthy, effective, and responsible machine learning systems hinges on understanding how differences in training data and modeling decisions interact to impact predictive performance.
We focus on a particular type of data-model inefficiency, in which adding training data from some sources can actually lower performance evaluated on key sub-groups of the population.
Our results indicate that data-efficiency is a key component of both accurate and trustworthy machine learning.
arXiv Detail & Related papers (2022-11-11T16:48:27Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Adversarial Infidelity Learning for Model Interpretation [43.37354056251584]
We propose a Model-agnostic Effective Efficient Direct (MEED) IFS framework for model interpretation.
Our framework mitigates concerns about sanity, shortcuts, model identifiability, and information transmission.
Our AIL mechanism can help learn the desired conditional distribution between selected features and targets.
arXiv Detail & Related papers (2020-06-09T16:27:17Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.