論文の概要: xGen-MM (BLIP-3): A Family of Open Large Multimodal Models
- arxiv url: http://arxiv.org/abs/2408.08872v2
- Date: Wed, 28 Aug 2024 05:03:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 20:18:52.297531
- Title: xGen-MM (BLIP-3): A Family of Open Large Multimodal Models
- Title(参考訳): xGen-MM (BLIP-3):オープン大型マルチモーダルモデルのファミリー
- Authors: Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan, Senthil Purushwalkam, Honglu Zhou, Viraj Prabhu, Yutong Dai, Michael S Ryoo, Shrikant Kendre, Jieyu Zhang, Can Qin, Shu Zhang, Chia-Chih Chen, Ning Yu, Juntao Tan, Tulika Manoj Awalgaonkar, Shelby Heinecke, Huan Wang, Yejin Choi, Ludwig Schmidt, Zeyuan Chen, Silvio Savarese, Juan Carlos Niebles, Caiming Xiong, Ran Xu,
- Abstract要約: 本稿では,LMM(Large Multimodal Models)を開発するためのフレームワークであるxGen-MMを紹介する。
このフレームワークは、慎重にキュレートされたデータセット、トレーニングレシピ、モデルアーキテクチャ、結果のLMMスイートで構成されている。
私たちのモデルは、シングルイメージとマルチイメージのベンチマークを含む、さまざまなタスクにわたって厳格な評価を受けています。
- 参考スコア(独自算出の注目度): 157.44696790158784
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This report introduces xGen-MM (also known as BLIP-3), a framework for developing Large Multimodal Models (LMMs). The framework comprises meticulously curated datasets, a training recipe, model architectures, and a resulting suite of LMMs. xGen-MM, short for xGen-MultiModal, expands the Salesforce xGen initiative on foundation AI models. Our models undergo rigorous evaluation across a range of tasks, including both single and multi-image benchmarks. Our pre-trained base model exhibits strong in-context learning capabilities and the instruction-tuned model demonstrates competitive performance among open-source LMMs with similar model sizes. In addition, we introduce a safety-tuned model with DPO, aiming to mitigate harmful behaviors such as hallucinations and improve safety. We open-source our models, curated large-scale datasets, and our fine-tuning codebase to facilitate further advancements in LMM research. Associated resources will be available on our project page above.
- Abstract(参考訳): 本稿では,LMM(Large Multimodal Models)を開発するためのフレームワークであるxGen-MM(BLIP-3)を紹介する。
このフレームワークは、慎重にキュレートされたデータセット、トレーニングレシピ、モデルアーキテクチャ、結果のLMMスイートで構成されている。
xGen-MMはxGen-MultiModalの略で、基礎的なAIモデルに関するSalesforce xGenイニシアチブを拡張している。
私たちのモデルは、シングルイメージとマルチイメージのベンチマークを含む、さまざまなタスクにわたって厳格な評価を受けています。
事前学習されたベースモデルは、強い文脈内学習能力を示し、命令調整されたモデルは、類似のモデルサイズを持つオープンソースのLMM間の競合性能を示す。
さらに,幻覚などの有害な行動を緩和し,安全性を向上させることを目的としたDPOを用いた安全チューニングモデルを提案する。
我々は、LMM研究のさらなる進歩を促進するために、我々のモデルをオープンソース化し、大規模データセットをキュレートし、微調整のコードベースを作りました。
関連リソースは、上記のプロジェクトページで公開されます。
関連論文リスト
- NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
NVLM 1.0は、フロンティアクラスのマルチモーダル言語モデル(LLM)のファミリーであり、視覚言語タスクの最先端結果を実現する。
トレーニング効率とマルチモーダル推論能力を両立させる新しいアーキテクチャを提案する。
我々は、NVLM-1.0モデルのための生産級マルチモーダリティを開発し、視覚言語タスクに優れる。
論文 参考訳(メタデータ) (2024-09-17T17:59:06Z) - VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents [50.12414817737912]
大規模マルチモーダルモデル(LMM)は、人工知能の新たな時代を迎え、言語と視覚の融合によって、高い能力を持つVisual Foundation Agentを形成する。
既存のベンチマークでは、複雑な実世界の環境でのLMMの可能性を十分に証明できない。
VisualAgentBench (VAB) は、視覚基礎エージェントとしてLMMを訓練し評価するための先駆的なベンチマークである。
論文 参考訳(メタデータ) (2024-08-12T17:44:17Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - TinyLLaVA: A Framework of Small-scale Large Multimodal Models [11.686023770810937]
本研究では,異なる視覚エンコーダ,接続モジュール,言語モデル,トレーニングデータ,トレーニングレシピの効果について検討する。
我々は,LLaVA-1.5 や Qwen-VL といった既存の 7B モデルに対して,我々の最良のモデル TinyLLaVA-3.1B を訓練する。
論文 参考訳(メタデータ) (2024-02-22T05:05:30Z) - CaMML: Context-Aware Multimodal Learner for Large Models [16.30752006781618]
大規模マルチモーダルモデル(LMM)をチューニングするためのコンテキスト認識型マルチモーダル学習器(CaMML)を導入する。
CaMMLは、マルチモーダルなコンテキストサンプルを大きなモデルにシームレスに統合し、類似したドメイン固有の最新の情報から知識を引き出すことができるように設計されている。
CaMMLに基づく2つのマルチモーダルモデルであるCaMML-7BとCaMML-13Bを開発した。
論文 参考訳(メタデータ) (2024-01-06T07:54:58Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
本稿では,大規模な事前学習型ユニモーダルモデルを用いて,識別型マルチモーダル学習を向上する方法について検討する。
MMLoRA(Multi-Modal Low-Rank Adaptation Learning)を導入する。
論文 参考訳(メタデータ) (2023-10-08T15:01:54Z) - An Empirical Study of Scaling Instruct-Tuned Large Multimodal Models [116.50367506746713]
LLaVAを33B,65B/70Bまでスケールアップする実験的検討を行った。
LMMのスケーリングはモデルの性能を継続的に向上し、言語機能を改善する。
この研究によって、より大規模で最先端のLMM研究がよりアクセスしやすくなることを願っている。
論文 参考訳(メタデータ) (2023-09-18T17:30:46Z) - Legal-Tech Open Diaries: Lesson learned on how to develop and deploy
light-weight models in the era of humongous Language Models [10.086015702323971]
私たちは、現代の法律技術スタートアップのR&Dグループのステップに従い、モデル開発とデプロイメントに関する重要な洞察を示します。
我々は、契約書や規制書に適合する複数のドメイン固有の多言語LMを事前訓練することで、ゼロから始める。
5つのダウンストリームタスクからなる半公的な半私的法定ベンチマークにおいて,そのようなモデルのベンチマーク結果を示す。
論文 参考訳(メタデータ) (2022-10-24T10:08:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。